

Center for Advanced Non-Ferrous Structural Alloys

An Industry/University Cooperative Research Center

Project 28-L: Laboratory Testing to Identify Permanent PVD Coatings to Minimize Lubricant Use During Forging

Fall 2019 Semi-Annual Meeting Colorado School of Mines, Golden, CO October 9 - 11, 2019

Student: Trevor Kehe & Spencer Randell (Mines) Faculty: Steve Midson, Andy Korenyi-Both, Kester Clarke (Mines). Industrial Mentors: Rob Mayer (Queen City Forging Co.)

Industrial Relevance

- Utilize permanent PVD coatings to reduce the friction coefficient between die and workpiece during forging
 - -Reduce the amount of lubricant required
 - -Reduce lubricant overspray
 - -Improve cycle times
 - -Improve die life
 - -Improve quality of forgings

Project 28-L: Laboratory Testing to Identify Permanent PVD Coatings to Minimize Lubricant Use During Forging

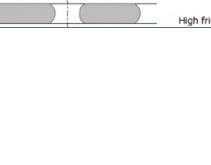
 Students: Trevor Kehe & Spencer Randell (Mines undergraduates) Advisors: Kester Clarke, Stephen Midson & Andy Korenyi-Both (Mines) 	Project Duration UG: May 2017 to July 2019 Recent Progress
 <u>Problem</u>: Forging operations can use significant amounts of lubricant, which can affect component outcomes and create excessive overspray. <u>Objective</u>: Evaluate permanent PVD die coatings that can reduce the coefficient of friction between the workpiece and the die. <u>Benefit</u>: Reduced lubricant use, greater processing consistency, longer die life. 	 Laboratory scale dies with inserts have been designed and manufactured. Tests have been performed with both coated and uncoated die inserts Coatings have been identified that significantly reduce the coefficient of friction

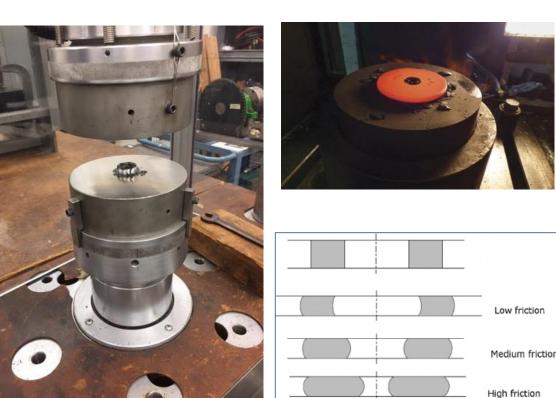
Description	% Complete	Status
1. Literature review	100%	•
2. Die design	100%	•
3. Die manufacture and insert PVD coating	100%	•
4. Ring-friction testing at room and elevated temperatures	100%	•
5. Final report and project summary	100%	•

SEMI-ANNUAL MEETING – Fall 2019

Center Proprietary – Terms of CANFSA Membership Agreement Apply

PVD Coatings for Evaluation

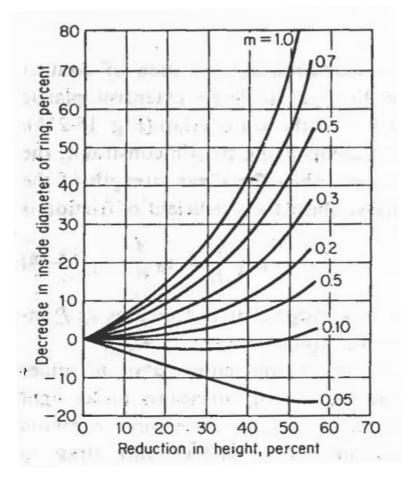

• Based on results of literature review

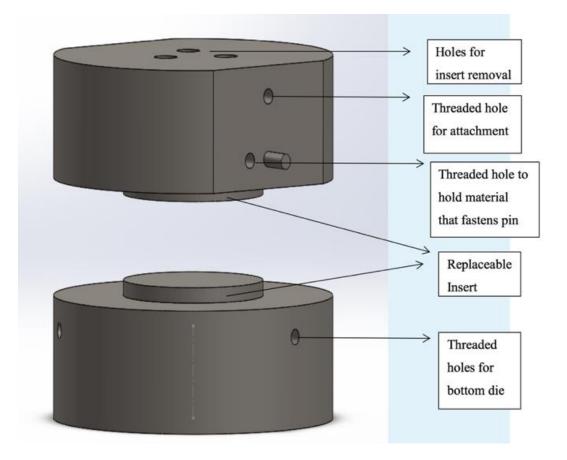

Type of Coating	Specifics	Supplier	Temperature
Single-layer hard coatings	TiCN	Tribologix, Dayton, Ionbond	<400°C
	Super MoS ₂	Tribologix	375°C
	Ti-MoS _{2 (MOST)}	Teer in UK, Ionbond	<350°C
Multi-layer hard coatings	AlCrN-MoS ₂	Tribologix	
containing lubricious particles	TiCN-TiMoS ₂	Teer	
	CrN-DLC	Phygen	<300°C
	CrN-SiC	Phygen	
	i-Kote	Tribologix	350°C
Hard coatings containing noble metals	Hard coating plus noble metal	Voevodin, Scharf & Samir at UNT	<500°C
Highly lubricious oxide graphite & MoS ₂		None identified	>500°C
Plasma Sprayed	PS400	NASA	
Laser Textured	Laser texture a TiCN coating	Tribologix/CSM	

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Ring Friction Test

- Test involves the compression of thin metallic rings
 - Having controlled dimensions
 - Typically OD:ID:thickness in the ratio of 6:3:1
- Coefficient of friction can easily be estimated after forging
 - Based on change in height and change in ID




Measurement of Friction Factor

- Friction factor (m) can be estimated from calibration curve
- Based on change in shape of ring
 - Increase/decrease in internal diameter
 - Reduction in height

Test Equipment

- Modified conventional ring compression test equipment
 - Ability to quickly switch die inserts
 - Capability to fit the test equipment onto the 100 kip hydraulic press at CSM
 - Measure both load and displacement during testing

Aluminum Forging Samples

- Rod of 6061 aluminum was purchased for the testing
 - OD of 1.0-inches
 - ID of 0.50-inches
- Samples 0.33-inches long were cut from the rod
- After saw-cutting
 - Saw cut surfaces were ground flat
- Final dimensions measured using digital calipers

Summary of Results

Coating	Lubricant	Temperature (°C)	No. of Samples Tested	Ave. Friction Coefficient
None	None	RT	8	0.8
i-Kote	None	RT	18	0.35
Super MoS ₂	None	RT	5	0.60
TICN	None	RT	8	0.87
AlCrTiN	None	RT	1	0.80
SiC	None	RT	3	1.00
DLC	None	RT	3	1.00

Summary of Results

Coating	Lubricant	Temperature (°C)	No. of Samples Tested	Ave. Friction Coefficient
None	None	RT	8	0.8
i-Kote	None	RT	18	0.35
Super MoS ₂	None	RT	5	0.60
TICN	None	RT	8	0.87
AlCrTiN	None	RT	1	0.80
SiC	None	RT	3	1.00
DLC	None	RT	3	1.00

Summary of Results

Coating	Lubricant	Temperature (°C)	No. of Samples Tested	Ave. Friction Coefficient
None	None	RT	8	0.8
i-Kote	None	RT	18	0.35
Super MoS ₂	None	RT	5	0.60
TICN	None	RT	8	0.87
AlCrTiN	None	RT	1	0.80
SiC	None	RT	3	1.00
DLC	None	RT	3	1.00

Summary & Conclusions

- In the unlubricated condition
 - Lowest friction factors were obtained with two PVD coatings
 - i-Kote and Super MoS₂
- These are hard, thin-film coatings containing lubricious particles
 - Graphite and/or molybdenum disulfide (MoS₂)
- Based on the results of this study
 - Identified coatings that provide low levels of friction during unlubricated forging
 - May allow a reduction in the use of conventional lubricants
 - Or possibly total elimination of conventional lubricants

Future Work

- Seeking additional funding to continue research
- Focus on testing of PVD coatings that contain lubricious particles
 - Identify coatings with lower friction factors than i-Kote or Super MoS₂
- Specific targets
 - Optimize the structure of the hard thin-film coating
 - Identify which lubricious particles provide the lowest friction factors
 - Identify the optimum concentration of lubricious particles
 - Determine the optimum distribution of the lubricious particles in the thin-film coating
 - Examine the thermal stability of these types of coatings
 - Perform extended forging series at elevated temperatures

Acknowledgements

- Funding for this project was provided by the Forging Industry Educational Research Foundation (FIERF)
- Additional funding was also provided by the National Science Foundation
 - Through their Research for Undergraduate (REU) program via the Center for Advanced Non-Ferrous Structural Alloys (CANFSA)
- The authors of this report would like to acknowledge the various companies that provided coatings for testing in this research
- In addition, the authors would like to thank Bohler and Hitachi who provided the steels used in this work

Questions?

Steve Midson Phone: 303-868-9766 Email: <u>Smidson@Mines.edu</u>

SEMI-ANNUAL MEETING – Fall 2019

Center Proprietary – Terms of CANFSA Membership Agreement Apply