

Center for Advanced **Non-Ferrous Structural Alloys** An Industry/University Cooperative Research Center

Project 38-L: On-Demand Casting of Net-Shape Titanium Components for Improved Weapon System Reliability

Fall 2019 Semi-Annual Meeting Colorado School of Mines, Golden, CO October 9 - 11, 2019

Student: TBD (Mines) Faculty: Steve Midson (Mines) Industrial Mentors: Paul Brancaleon (NADCA)

Industrial Relevance

Objective

Develop die casting of titanium alloys

Benefits

- Expanded supply chain for net-shape titanium components
- Production of lower cost titanium components
- Replace heavier components with lightweight titanium castings

SEMI-ANNUAL MEETING - Fall 2019

Project 38-L: On-Demand Casting of Net-Shape Titanium Components for Improved Weapon System Reliability

- Undergraduate student: TBD
- Advisor: S. Midson (Mines)
- <u>Problem</u>: The supply chain for low-cost, lightweight net-shape titanium components needs to be expanded.
- <u>Objective</u>: Extend the die casting process for the casting of titanium alloys. Identify a permanent die + coating system for titanium die casting.
- <u>Benefit:</u> Die casting is a low-cost approach for producing components, and so the extension of die casting to Ti-alloys could have a significant impact on the titanium marketplace.

Project Details

UG August 2018 to July 2023 Funded by DLA

Recent Progress

- Looking at three approaches to fabricate a die that will meet project targets
- Performed an initial trial using graphite inserts
- Identified a supplier that can provide thermally sprayed coatings

Metrics			
Description	% Complete	Status	
1. Identification of titanium alloy with improved castability (if necessary)	5%	•	
2. Identification of candidate high temperature resistant die casting die materials & coatings for titanium die casting	22%	•	
3. Casting trials to evaluate die materials	5%	•	
4. Provide a coated tool for the demonstration of on-demand melting	0%	•	

Project Tasks - CSM

1. Die casting dies

- Identify high temperature resistant die materials and coatings for titanium die casting
- Test die concepts in the laboratory
- Provide a coated tool for the demonstration of ondemand die casting of titanium
- 2. Alloys

4

- Identify a titanium alloy that can be produced by high pressure die casting
 - Fluidity
 - Hot tearing resistance
 - Melting temperature

1. Tooling

SEMI-ANNUAL MEETING - Fall 2019

Potential Tooling Issues

- Heat checking
 - Cracking of die surface due to cyclical thermal fatigue
- Gross cracking
 - From high levels of thermal and mechanical stresses
- Oxidation of die
 - Due to high melting temperature of the titanium
- Reaction between liquid titanium and mold material

Heat checking of an H13 steel die

Die Surface Temperature During One Casting Cycle

- Die surface is heated by injection of liquid metal
 - Die surface is in compression
- Die surface cools after casting is ejected and sprayed with lubricant
 - Die surface is in tension
- Need to minimize magnitude of tensilecompressive stresses

Source: NADCA's book on Extending Die Life

Tooling Concepts

- Examining three approaches
 - 1. Metallic tool with graphite liners
 - 2. Metallic tool with ceramic coatings
 - 3. Refractory metal tools

Graphite Liners

- Would a relatively soft graphite liner survive aggressive die casting process?
 - High injection speeds
 - 25 m/sec
 - High injection pressures
 - 6,000 psi
- Fabricate an insert from graphite
 - For an aluminum die casting die
- Perform a test at Mercury Castings

- Gearcase die casting at Mercury Castings
- Colored die inserts are ejected with casting

- Insert shown in red
- Insert is about 4-inches in size

Graphite Inserts

- Two graphite inserts were
 machined from IPG24 grade
 graphite
 - Graphite was purchased from Asbury Carbons
 - Has excellent mechanical properties

Graphite	Compressive Strength (ksi)	Tensile Strength (ksi)		
Asbury IPG24	24.1	7.1		

Test Summary

- The graphite inserts appeared to survive the contact with the liquid metal
 - Graphite inserts were severely chipped after production of 9 castings
 - But none of the damage observed on the graphite inserts appeared to be caused directly by the liquid aluminum
- Instead, the fracturing originated from factors unique to this operation of this die insert
- This suggests that graphite can indeed be used as a die material for the die casting of aluminum
 - And possibly for the die casting of titanium
- Further testing is planned at Mercury Castings

Thermally Sprayed Coatings

- Cincinnati Thermal Spray has promised to provide coated samples
 - Viability of coatings will be tested in liquid metal trials
 - Aluminum, copper, steel, titanium

Bond coat	Thickness	Mid Layer	Thickness	Top Coat	Thickness	Sealer
NiCrAlY	100-150 μm (0.004-0.006"	Porous YSZ	250-300 μm (0.010-0.012")	Dense YSZ	Target 50 μm (0.002")	none
NiCrAlY	100-150 μm (0.004-0.006"	Porous YSZ	250-300 μm (0.010-0.012")	Dense YSZ	Target 50 μm (0.002")	BN
Мо	50-100μm (0.002-0.004")			Dense YSZ	Target 50 μm (0.002")	none
Mo	50-100μm (0.002-0.004")			Dense YSZ	Target 50 μm (0.002")	BN
Mo	50-100μm (0.002-0.004")			100% Yttrium Oxide	Target 50 μm (0.002")	none
Мо	50-100μm (0.002-0.004")			100% Yttrium Oxide	Target 50 μm (0.002")	BN

Thermally Sprayed Coatings

- Cincinnati Thermal Spray has promised to provide coated samples
 - Viability of coatings will be tested in liquid metal trials
 - Aluminum, copper, steel, titanium

Bond coat	Thickness	Mid Layer	Thickness	Top Coat	Thickness	Sealer
NiCrAlY	100-150 μm (0.004-0.006"	Porous YSZ	250-300 μm (0.010-0.012")	Dense YSZ	Target 50 μm (0.002")	none
NiCrAlY	100-150 μm (0.004-0.006"	Porous YSZ	250-300 μm (0.010-0.012")	Dense YSZ	Target 50 μm (0.002")	BN
Mo	50-100μm (0.002-0.004")			Dense YSZ	Target 50 μm (0.002")	none
Mo	50-100μm (0.002-0.004")			Dense YSZ	Target 50 μm (0.002")	BN
Mo	50-100μm (0.002-0.004")			100% Yttrium Oxide	Target 50 μm (0.002")	none
Мо	50-100μm (0.002-0.004")			100% Yttrium Oxide	Target 50 μm (0.002")	BN

2. Alloys

SEMI-ANNUAL MEETING - Fall 2019

Alloys

- Ti-6Al-4V is most commonly cast alloy
 - Melting temperature is high
 - ~1650°C
 - Die life is shortened as liquid metal temperature is increased
- Is it possible to use Ti-alloys with lower melting temps?

Alloy	Composition (at%)	Τ ₁ (°C)	Phases
01	$\mathrm{Ti}_{62}\mathrm{Fe}_{30}\mathrm{Mo}_8$	1210	β-Ti +TiFe
02	Ti ₆₃ Fe ₂₃ Mo ₈ Sn ₆	1249	β -Ti + TiFe + Ti ₃ Sn
03	Ti ₆₀ Fe ₂₃ Mo ₈ Sn ₉	1225	β -Ti + TiFe + Ti ₃ Sn
04	Ti ₆₄ Fe ₂₉ Nb ₈	1240	β-Ti + TiFe
05	Ti ₆₃ Fe ₂₃ Nb ₈ Sn ₆	1230	β -Ti + TiFe + Ti ₃ Sn
06	$Ti_{60}Fe_{23}Nb_8Sn_9$	1215	β -Ti + TiFe + Ti ₃ Sn
07	c.p. Ti	1670	α-Τί

Source: M.O.A Rocha et al., Federal University of São Carlos, Brazil

 This research is sponsored by the DLA – Troop Support, Philadelphia, PA and the Defense Logistics Agency Information Operations, J62LB, Research & Development, Ft. Belvoir, VA

Questions?

Steve Midson Phone: 303-868-9766 Email: <u>Smidson@Mines.edu</u>

SEMI-ANNUAL MEETING – Fall 2019