

Center for Advanced **Non-Ferrous Structural Alloys** An Industry/University Cooperative Research Center

Project 34: In-situ Observation of Phase and Texture Evolution Preceding Abnormal Grain Growth in Ni-based Aerospace Alloys

Fall 2019 Semi-Annual Meeting Colorado School of Mines, Golden, CO October 9 - 11, 2019

Student: Byron McArthur (Mines)

Faculty: Amy Clarke, Kester Clarke, Michael Kaufman (Mines) Industrial Mentor: Eric Payton (AFRL), Kevin Severs (ATI)

Project 34: In-situ Observation of Phase and Texture Evolution Preceding Abnormal Grain Growth in Ni-based Superalloys

 Student: Byron McArthur (Mines) Advisors: Amy Clarke, Kester Clarke (Mines) 	Project Duration PhD: Nov 2017. to Dec. 2020
 <u>Problem</u>: Abnormal grain growth (AGG) in Ni-based superalloys (RR-1000) significantly reduces mechanical properties and occurs as a result of forging parameters. <u>Objective</u>: Determine the mechanism of abnormal grain growth in Ni-based superalloys using ex-situ and in-situ characterization techniques. <u>Benefit</u>: Improved mechanical properties for turbine disk alloys. 	 <u>Recent Progress</u> Performed microstructural simulations to evaluate effects of soft impingement on matrix grain size Internship at Air Force Research Labs Developing theory of AGG

Metrics			
Description	% Complete	Status	
1. Literature review	75%	•	
2. Explore abnormal grain growth forging parameters for RR1000	75%	•	
3. Ex-situ and interrupted material testing and characterization	50%	•	
4. Develop and test theory to explain abnormal grain growth phenomena	50%	•	
5. Perform in-situ microscopy with a synchrotron source (HEDM) to demonstrate phenomena	0%	•	

Material: RR-1000, *γ*-*γ*'

• Processing:

- Powder metallurgy
- Hot isostatic pressure compaction
- Extruded at 5:1 ratio
- Isothermal forging: 1035-1110°C
 - Performed in Gleeble®
- SSHT: 1150-1170°C
 - Performed in dilatometer
- Critical AGG parameters:
 - Strain
 - Strain rate
 - Heating rate to super solvus hold
 - Forging temperature

Isothermal Forging

- Sub- γ' solvus temperature
- Low strain rate
- Maintain superplastic deformation for decreased forging loads
- Primary γ' pins γ grain boundaries
 - Secondary γ' less effective or dissolved
- Low stored energy accumulation
 - Grain boundary sliding (Coble creep)
 - Dynamic recovery
 - Dynamic recrystallization

Mitchell, R. J., Lemsky, J. A., Ramanathan, R., Li, H. Y., Perkins, K. M., & Connor, L. D. *Superalloys 2008, pp.* 347–356.

As-received Material

<u>Low γ_1 ' Fraction</u>

<u>High γ_1 'Fraction</u>

Thanks to Yaofeng Guo for TEM imaging

SEMI-ANNUAL MEETING - Fall 2019

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Low γ_1 'Fraction

Thanks to Yaofeng Guo for TEM imaging

SEMI-ANNUAL MEETING - Fall 2019

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Experimental Procedure

Wire-EDM

Machine to length with parallel faces

Summary of Prior Work & Results CANFSA

- Replicate industrial processing that leads to AGG in lab-scale testing
- Determine influential processing parameters and their roles
 - Varying parameters shift AGG to regions of more/less stored energy
- Consistently produce AGG via Gleeble TMP and heat treating

- Begin exploring observation and characterization techniques
 - Ex-situ, interrupted, and in-situ

Soft Impingement Modeling

- Evaluate effects of spatially clustered γ' on γ grain size distribution during heat treating
- Initial microstructure of γ' within a γ matrix created with Dream.3D
- Evolved microstructure with a hybrid model
 - SPPARKS, Hybrid Potts Phase-field
- Figures represent ~500x500µm region of material
 - Simulation is unitless

Composition

Phase Grain ID

Soft Impingement Modeling

- Spatial clustering delays precipitate dissolution
- Precipitates effective at pinning matrix grain boundaries
- Bimodal matrix grain size temporarily
- Matrix grain size equalizes

Soft Impingement Modeling

- Spatial clustering delays precipitate dissolution
- Precipitates effective at pinning matrix grain boundaries
- Bimodal matrix grain size temporarily
- Matrix grain size equalizes

Soft Impingement (Cont.)

- Possible spatial clustering of γ' due to elemental segregation in alloyed powder or deformation assisted γ' dissolution may create regions of lower γ' phase fraction
- Leads to increased local γ grain size in early stages of grain growth that could propagate during heat treating
- Modeling accounts for boundary energy, but no stored energy contributions as a driving force to accelerate grain growth
- Current experimental results do not appear to support this theory
 - Low deformation and strain rate required
 - More work needed

Thermomechanical Processing and Characterization Plans

- Perform "Step-Load" isothermal forging at various strains to map deformation mechanisms and relate to AGG conditions
- Interrupted heat treating to determine changes in stored energy during recovery, recrystallization, and grain growth
 - Sub-, super-, and critical strain rates for AGG
- Special attention to stored energy near primary- γ'

Orientation Map

Grain Reference Orientation Deviation

SEMI-ANNUAL MEETING – Fall 2019

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Future Work

Stored Energy Characterization

- Analyze the γ and γ' dislocation structures
 - As received, forged, interrupted heat treated, final
 - TEM & SEM-EBSD
 - Identify instances of HERX (dynamic or static)

Interrupted Processing

- Perform heat treating of AGG producing material
- Track growth of γ and dissolution of γ' approaching γ' -solvus

<u> γ' Spatial Distribution</u>

- Quantify distribution of γ' throughout material
 - Track dissolution during TMP & heat treating

Progress

Challenges & Opportunities

- Working on improving conventional TEM foil preparation technique
 - 20:80 Perchloric:Methanol, -20°C, 16-25V, 80μm foil
 - More area than FIB liftouts
- Improving Gleeble capabilities
 - Reducing thermal gradients (Kaowool wrapped specimen)
 - Adjust PID settings for high temperature, low displacement rate
- Contemplating adding model alloys
 - Compare effects of ordering by creating CuAu (L1₂ ordered) or AlAg (disordered) systems with second phase precipitates
 - Simple binary system may show HERX in a more controlled manner, with similar precipitate dissolution rates

Center for Advanced Non-Ferrous Structural Alloys An Industry/University Cooperative Research Center

Thank you!

Byron McArthur bmcarthu@mines.edu

Center Proprietary – Terms of CANFSA Membership Agreement Apply