Center/Site: CANFSA/Colorado School of Mines	Date : October 2019
Tracking No.: 34: In-situ Phone : (303) 71	7-6273 E-mail : bmcarthu@mines.edu
Diservation of Phase and Texture Evolution Preceding Abnormal Grain Growth in Ni-based Aerospace Alloys	7-6273 E-Indii : <u>Dificar (fiu@filifies.edu</u>
Center/Site Director: CANFSA/M. Kaufman/P. Co A. Clarke	llins/ Type: (Continuing)
Project Leader: Byron McArthur	Proposed Budget: \$ 240,000
Project Description : Abnormal grain growth (AGG) ca ead to grains that are orders of magnitude larger than degradation in mechanical properties. The process para and supersolvus heating rate, are known to be influentia eads to AGG is yet to be established. The goal of this p provide processing to avoid the phenomena.	intended. Excessive grain size causes a significant meters, such as strain rate, forging temperature, al; however, the microstructural mechanism that
Experimental plan : Perform thermomechanical proce controlled manner. Utilize transmission electron microso (SEM)-electron backscattered diffraction (EBSD) for ex- the processing route. Finally, perform in-situ high-energy synchrotron source.	copy (TEM) and scanning electron microscopy situ material characterization at various steps alon
Related work elsewhere : Huron et al. has performed portion of this project on a similar material to determine produced AGG. Payton et al. and Charpagne et al. inves contribute.	e strain rate and forging temperature ranges that
How this project is different: The progress of a grai forging and supersolvus treatment will be observed in-s microstructure evolution associated with thermos-mech	itu with HEDM, complemented by ex-situ studies o
Milestones for the current proposed year : Thermo consistently produce AGG. Interrupted heat treatments Performed computer simulations to explore the possible	of a constant area to track progression of AGG.
Deliverables for the current proposed year : Provid AGG. Generate local strain, strain rates, and temperatu (FEA). Develop a mechanistic theory describing the mic	res within the specimen by finite element analysis
How the project may be transformative and/or be conditions for inducing AGG. Provide local strain, strain FEA.	
Research areas of expertise needed for project su element analysis, electron microscopy, high-energy syn	
Potential Member Company Benefits: Understand t product quality for aerospace applications.	he phenomena of AGG to improve processing and
Progress to Date: Initial literature review, as-received	material characterization and thermo-mechanical
processing to create AGG. Microstructural analysis of po	