-	ry - Project Synopsis	Date: October 2019
Center/Site: CANFSA/Colorado School of Mines		
Tracking No .: 33b-L: In-situ Studies of Strain Rate Effects on Phase Transformations and Microstructural Evolution in Multi- Principal Element Alloys	Phone: (469) 222-3811	E-mail: jacopley@mymail.mines.edu
Center/Site Director: M. Kaufman/P. Collins/A. Clarke		Type: (Continuing)
Project Leader: John Copley		Proposed Budget: \$240,000, Leveraged
multi-principal element alloys (MPE, to formulate an alloy design method induced plasticity (TRIP & TWIP) eff results in high work hardening rates	As) as a function of deformati dology for blast resistance. Sp fects in MPEAs are the main fo s, staving off mechanical insta	isms and microstructural evolution in on pathway, processing and composition becifically, transformation and twinning ocus of this study, as TRIP/TWIP behavior ability and resulting in increased strength crash resistance, due to high toughness.
occur before, after and during defor dependencies of TRIP and TWIP effe	static and dynamic deformati mation with state-of-the-art ects on intrinsic and extrinsic nderstanding will be used to i	on. Characterization of the samples will techniques to understand the
rates, but little literature explores la greater) achieved by Kolsky bar and HEAs, alloys with 5 or more elemen	arge ranges of strain rate, esp d gas gun experiments. Other ts, and equiatomic composition	
		ger ranges of strain rates and strain states tropy alloys specifically, allowing for a
	eformation across a range of n-situ XRD during high rate de	
	conditions and alloying. Mec	ng dependencies of TWIP and TRIP in hanical testing, in-situ and post-mortem
	r allows for both increased for	ciety : The high work hardening rates rmability and strength in an alloy, allowing esigned deformation mechanisms.
of optical and electron microscopy,	X-ray diffraction, quasi-static	licrostructural characterization by means mechanical testing and thermo- ational user facilities, alloy design and
	s study will allow for better u ing to improved alloy design,	how promise for desirable nderstanding of TRIP/TWIP behavior in manufacturability, and the potential for
Photon Source have shown evidence	e of crystalline refinement, lik e thicknesses for improved di	ffraction results have been performed.

The Executive Summary is used by corporate stakeholders in evaluating the value of their leveraged investment in the center and its projects. It also enables stakeholders to discuss and decide on the projects that provide value to their respective organizations. Ideally, the tool is completed and shared in advance of IAB meetings to help enable rational decision making.