Center/Site: CANFSA		
Tracking No .: 17: Characterization of Microstructure Evolution in Nickel-Titanium- Hafnium Intermetallics	Phone: (614)313-3371	E-mail: seanmills@mines.edu
Center/Site Director: CANFSA/M. Kaufman/P. Collins/A. Clarke		Type: Continuing
Project Leader: Sean Mills		Proposed Budget: \$240,000
metallurgy and bearing element per	formance in Ni-Ti-Hf alloys. ansformation kinetics, which	effect of hafnium ternary alloying on the The overall benefits of hafnium alloying can reduce the residual stress and still alloys.
stress and hardness measurement	and a time/temperature/tran	contact fatigue characterization, residual sformation study of NiTiHf alloys. Alloy at.% and hafnium contents by 1.0 – 8.0
Related work elsewhere: The Na shape memory actuation and super	ASA Glenn Research Center i elastic applications.	s involved in NiTiHf alloy development for
How this project is different: Hi compressive/torsional toughness of optimized for tooling and wear-limit	the material. The alloying a	imized processing to increase the nd microstructural condition can be
is being performed by transmission compositions. Microstructure analys conditions under wear track specim	electron microscopy (TEM). is on deformed samples com ens. Further understanding o is of interest. Continued rolli	
Deliverables for the surrent pre		
development for tribology is being p dynamic loading. A letter on the for	prepared, in addition to a par mation and structure analys	ialia paper on NiTiHf alloy microstructure per on NiTiHf alloys deformed via static vs. is of cubic Ni_3Ti_2 phase is in preparation. A ontact fatigue is also in preparation.
development for tribology is being p dynamic loading. A letter on the for paper on deformation of ultra-hard How the project may be transfo bearings in the International Space	prepared, in addition to a par mation and structure analys NiTiHf alloys under rolling co prmative and/or benefit so Station. Space-age applicati	per on NiTiHf alloys deformed via static vs. is of cubic Ni ₃ Ti ₂ phase is in preparation. A ontact fatigue is also in preparation.
development for tribology is being p dynamic loading. A letter on the for paper on deformation of ultra-hard How the project may be transfo bearings in the International Space other industries, driving performance Research areas of expertise ne	prepared, in addition to a par mation and structure analys NiTiHf alloys under rolling co prmative and/or benefit so Station. Space-age applicati ce in extreme environments. aded for project success:	ber on NiTiHf alloys deformed via static vs. is of cubic Ni ₃ Ti ₂ phase is in preparation. A ontact fatigue is also in preparation. ociety : Alloys will be optimized for rotary ons can have a long-term impact on many
development for tribology is being p dynamic loading. A letter on the for paper on deformation of ultra-hard How the project may be transfo bearings in the International Space other industries, driving performance Research areas of expertise nee strengthening mechanisms, failure Potential Member Company Ber	orepared, in addition to a pap mation and structure analys NiTiHf alloys under rolling co ormative and/or benefit so Station. Space-age applicati ce in extreme environments. analysis. mefits: Greater understandin	ber on NiTiHf alloys deformed via static vs. is of cubic Ni ₃ Ti ₂ phase is in preparation. A ontact fatigue is also in preparation. ociety : Alloys will be optimized for rotary ons can have a long-term impact on many Fatigue and fracture, phase transformation g of NiTiHf alloys, phase transformations,
development for tribology is being p dynamic loading. A letter on the for paper on deformation of ultra-hard How the project may be transfo bearings in the International Space other industries, driving performance Research areas of expertise nee strengthening mechanisms, failure Potential Member Company Ber microstructural evolution, and poter	brepared, in addition to a par mation and structure analys NiTiHf alloys under rolling co brmative and/or benefit so Station. Space-age applicati te in extreme environments. Ended for project success: analysis. Thefits: Greater understandin ntial applications of this alloy	ber on NiTiHf alloys deformed via static vs. is of cubic Ni ₃ Ti ₂ phase is in preparation. A ontact fatigue is also in preparation. ociety : Alloys will be optimized for rotary ons can have a long-term impact on many Fatigue and fracture, phase transformation g of NiTiHf alloys, phase transformations,

and its projects. It also enables stakeholders to discuss and decide on the projects that provide value to their respective organizations. Ideally, the tool is completed and shared in advance of IAB meetings to help enable rational decision making.