

Center for Advanced **Non-Ferrous Structural Alloys** An Industry/University Cooperative Research Center

Project 29-L: Identification of Deformation Mechanisms in Thermally Stable Cast AI-Cu Alloys via Neutron Diffraction

Spring 2019 Semi-Annual Meeting Iowa State University, Ames, IA April 3-5, 2019

IOWA STATE

Student: Brian Milligan (Mines) Faculty: Amy Clarke (Mines) Industrial Mentors: Amit Shyam (ORNL) Other Participants: Dong Ma (ORNL), Lawrence Allard (ORNL), Francisco Coury (Mines), Chloe Johnson (Mines), Yaofeng Guo (Mines), Benjamin Ellyson (Mines), Alec Saville (Mines), Gus Becker (Mines)

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Project 29-L: Identification of Deformation Mechanisms in Thermally Stable Cast AI-Cu Alloys *via* **Neutron Diffraction**

 Student: Brian Milligan (Mines) Advisor(s): Amy Clarke (Mines), Amit Shyam (ORNL) 	Project Duration Ph.D.: August 2017 to May 2021
 <u>Problem</u> Deformation and phase transformation behavior at a microscale in Al-Cu alloys is not well understood. <u>Objective</u> Apply in-situ neutron diffraction, SEM, TEM, mechanical testing, and synchrotron X-ray imaging to better understand the mechanical behavior and phase transformations in these alloys. <u>Benefit</u> Improvement of properties of thermally stable Al-Cu alloys (including new ORNL alloy), as well as furthering scientific understanding of precipitation strengthened Al alloys. 	 <u>Recent Progress</u> Implemented Kroner self-consistent model for elastic behavior Continued development for quantification of strain hardening mechanisms from energetic standpoint Interrupted aging study with AI-Cu, AI-Ag, and AI- Ag-Cu at 350°C performed at APS Implemented model to compare different aging conditions of 206 AI

Metrics			
Description	% Complete	Status	
1. Initial literature review	85%	•	
2. In situ neutron diffraction, creep testing, and TXM	65%	•	
3. Microstructural characterization pre- and post- creep and tension	50%	•	
4. Qualitative assessment of neutron diffraction and mechanical test data		•	
5. Application and development of qualitative modelling to micro-scale diffraction data	40%	•	

Industrial relevance

- Cast Al-Cu alloys have high strength, low density, and are easy to manufacture
 - Used in various industries such as for cylinder heads in light-duty engines
- Understanding of deformation mechanisms allow prediction of mechanical behavior
 - Strain hardening behavior commonly overlooked, but is relevant for fatigue life

Cylinder head cast with ORNL ACMZ alloy. Credit: Jason Richards (ORNL)

Neutron diffraction used to measure internal grain stresses

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Background in the model system 206 Al

SEMI-ANNUAL MEETING – Spring 2019 Center Proprietary – Terms of CANFSA Membership Agreement Apply

Anisotropy observed in neutron diffraction results

ON-FERROUS STRUCTURAL ALLOYS

Applied stress effects on precipitate shearing energy

8

- 2 major contributions to energy required for shearing:
 - Lattice mismatch

Existing case: Rafting of γ-γ' structures in Ni superalloys

- Morphology of γ' is changed in tension or compression
- $\gamma_{raft} \propto \sigma_{app} * \delta_{misfit} * \Delta Y$
- Hypothesis: Same effect can increase/decrease likelihood of precipitate shearing
 - Strain energy of newly created interface can be changed

F.R.N. Nabarro, Metall. Mater. Trans. A 27 (1996) p.513

SEMI-ANNUAL MEETING - Spring 2019

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Development of quantitative model for shearing energy

CANFSA CENTER FOR ADVANCED NON-FERROUS STRUCTURAL ALLOYS

- Assumptions:
 - Strain energy on each side of interface is equal before stress is applied
 - Strain is uniform throughout precipitate (thin, but large diameter)
 - No strain field interactions between adjacent precipitates

•
$$f(\theta) = \frac{\sum_{n} (\cos(\theta) - \nu \sin(\theta))}{n}$$

 Averaged over multiplicity of applied stress direction, slip plane, and precipitate orientation

Symbol	Value
θ	Angle between σ_{app} and ε_{0}
n	Multiplicity
ν	Matrix Poisson's ratio
ε ₀	Interfacial strain
Cγ	Stiffness component in strain direction
t _p	Precipitate thickness
A	Interface area
σ_{app}	Applied stress
D	Plate diameter

Geometric considerations in shearing energy model

•
$$E_{strain}^{ppt} = 2 * \epsilon_0 * C_\gamma * t_p * A$$

 Interface not perpendicular to thickness of precipitate

$$-t_p = x * \tan(54)$$

$$-A = xL$$

$$-x_{max} = y * \sin(54)$$

$$E_{strain}^{ppt} = 2 * \int_{0}^{x_{max}} \epsilon_0 C_{\gamma} x D \tan(54) dx$$
$$\Delta \sigma = \epsilon_0 C_{\gamma} - \left(\epsilon_0 C_{\gamma} + \sigma_{app} f(\theta)\right)$$
$$\Delta E_{strain}^{ppt} = 2 * \int_{0}^{x_{max}} \sigma_{app} f(\theta) x D \tan(54) dx$$

Comparison of modeling to experimental results

- Plot compares ΔE_{strain}^{ppt} 2E with grain level strain hardening rate
 - Correlation implies transition from shearing to looping controls strain hardening (in this condition)

Effect of precipitate size on the anisotropy behavior

- Previous comparison applied to each condition of 206
- Shearing energy varies with precipitate size
- Slope of this plot shows magnitude of transition region control

Condition	Slope on Plot
NA	0.1199
PA	0.1909
200 OA	0.9238
250 OA	0.3067
300 OA	0.1403

SEMI-ANNUAL MEETING – Spring 2019 Center Proprietary – Terms of CANFSA Membership Agreement Apply

Bringing it all back together

- Plot shows slope from previous slide ("effectiveness parameter") compared to area of shearing interface
- Appears as if transition between regimes occurs near 200°C overaged condition
- Note that the correlation occurs in all conditions – even ones without θ'
- May be able to apply similar logic to different precipitates

1000

n

2000

Interfacial Area (nm²)

3000

4000

Adding another alloy – and another variable

- RR350 is an alloy with a very thermally stable precipitate structure
- Will be varying testing temp Si Cu Zn Fe with constan 0.05 4.8 0.01 0.09 microstructure
- As-aged microstructure similar to 206 250°C overage

First look at RR350 elevated temperature data

- Seems to be following similar grain orientation relationship
- Anisotropy seems to be lessening with increasing temperature
- Relationship will ^y support
 likely be more complicated than room temperature

Conclusions

- 206 shows a dependence of grain orientation on deformation mechanisms
- This behavior can be described with a simple model
- Magnitude of this dependence varies with precipitate size
- RR350 seems to follow similar behavior at room temperature, with lower magnitude of anisotropy with increasing temperature
- Next steps: Additional TEM and applying new energetic analysis to existing strain hardening models

Thank you for your attention!

Questions?

SEMI-ANNUAL MEETING – Spring 2019 Center Proprietary – Terms of CANFSA Membership Agreement Apply

3-D precipitate evolution in Al-5at%Cu observed with TXM

3-D precipitate evolution in Al-5at% Ag observed with TXM

350°C for 1hr 350°C for 9hr

SEMI-ANNUAL MEETING - Spring 2019

Center Proprietary – Terms of CANFSA Membership Agreement Apply

3-D precipitate evolution in Al-5at%Ag-5at%Cu observed with TXMC CANFSA 350°C for 1h 350°^{350°C} for 9hr

Extra Slides: Intergranular Precipita Peak Aged

 "Chinese sc and Ni cont

CANFSA CENTER FOR ADVANCED DN-FERROUS STRUCTURAL ALLOYS

Center for Advanced Non-Ferrous Structural Alloys An Industry/University Cooperative Research Center

Project 29 - Identification of Deformation Mechanisms of Thermally Stable Cast Al-Cu Alloys via Neutron Diffraction and Creep Testing

Student: Brian Milligan

Faculty: Amy Clarke

Industrial Partners: ORNL (Amit Shyam)

Project Duration: Sept. 2017 – May 2021

Achievement

Modeling of creep behavior in commercial and experimental Al-Cu alloys at high homologous temperature

Significance and Impact

Thermally stable AI-Cu cylinder head alloys developed at ORNL outperform commercial alloys during creep loading, allowing for higher engine operating temperatures

Research Details

Performed creep experiments and developed new low-stress microstructure-based creep model using results

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Project 29 - Identification of Deformation Mechanisms of Thermally Stable Cast AI-Cu Alloys via Neutron Diffraction and Creep Testing

Student: Brian Milligan Faculty: Amy Clarke

Industrial Partners: ORNL (Amit Shyam)

Project Duration: Sept. 2017 – May 2021

Achievement

 Modeling of creep behavior in commercial and experimental AI-Cu alloys at high homologous temperature

Significance and Impact

 Thermally stable AI-Cu cylinder head alloys developed at ORNL outperform commercial alloys during creep loading, allowing for higher engine operating temperatures

Research Details

 Performed creep experiments and developed new low-stress microstructure-based creep model using results

Project 29 - Identification of Deformation Mechanisms of Thermally Stable Cast AI-Cu Alloys via Neutron Diffraction

Student: Brian Milligan

Faculty: Amy Clarke Industrial Partners: ORNL (Amit Shyam) Project Duration: Sept. 2017 – May 2021

Program Goal

 Characterize the mechanical properties and microstructure of thermally stable AI-Cu alloys under various loading and aging conditions

Approach

 Utilize neutron diffraction, microscopy, and mechanical testing to identify deformation mechanisms ex-situ and in-situ

Benefits

 Improved scientific understanding of mechanical properties in AI-Cu alloys as well as insight into how to improve their performance at high temperature

Precipitation in RR350 aluminum alloy