

Center for Advanced **Non-Ferrous Structural Alloys** An Industry/University Cooperative Research Center

Project 31-L: Accumulative Roll Bonding of Al and Ti Sheets Toward Low Temperature Superplasticity

Spring 2019 Semi-Annual Meeting Iowa State University, Ames, IA April 3-5, 2019

Student: Brady McBride (Mines)

Faculty: Dr. Kester Clarke (Mines)

Industrial Mentors: Ravi Verma (Boeing), John Carpenter (LANL)

Project 31-L: Accumulative Roll Bonding of Al and Ti Sheets Toward Low Temperature Superplasticity

 Student: Brady McBride (Mine Advisor(s): Kester Clarke (Mine 	s) es)	Project Duration PhD: September 2017 to March 2021
Problem: Superplastic forming	requires high	Recent Progress
 <u>Objective:</u> Develop an in-depth how accumulative roll bonding dependent strength and superp Al and Ti alloys. <u>Benefit:</u> Low temperature super result in reduced cost and cycle reduced deformation temperature strain rates. 	in rates. n understanding of affects temperature plastic properties of erplasticity could e time due to ures and increased	 Five successful ARB cycles of AI 5083 Modification of existing ARB process to reduce edge cracking Preliminary EBSD, TEM data from AI 1100 and AI 5083 roll bonded material Design grips for superplastic tensile testing to mitigate sources of error

Metrics						
Description	% Complete	Status				
1. Literature review	65%	•				
2. ARB process development	100%	•				
3. Investigate roll bonding process parameters (literature review)	100%	•				
4. Mechanical & microstructural characterization	10%	•				
5. Process refinement / alloy selection for optimized superplasticity	0%	•				

Outline

- Project Overview / Industrial Relevance
- Introduction to Accumulative Roll Bonding (ARB) process
- Development of ARB Process
 - Al 1100 \rightarrow Al 5083
- Mitigation of edge cracking
- Tensile testing for superplasticity
- Techniques for microstructural analysis
- Future Work

Industrial Relevance

Enhanced properties:

- Hall-Petch strengthening
- low temperature superplasticity

Applications:

- superplastic forming
- high strength sheet components

Benefits:

- reduced cycle time
- reduced die wear
- reduced processing cost

Saito et al., *Acta Materialia*, 1999. Cleveland et al., *Materials Science and Engineering A*, 2003.

Project Motivation

Conventional superplasticity: Grain Size: < 10 μm Temperature: ~ 500 °C (0.9 T_H) Elongation: ~ 300%

6 ARB Cycles – 250 nm

200 °C, 220% elongation – 580 nm

Tsuji et al., *Materials Transactions*, 1999. SEMI-ANNUAL MEETING – April 2019

Role of Redundant Shear

Q: How is ARB different from conventional rolling?

Lubricated – low friction

Kamikawa et al., *Acta Materialia*, 2007. SEMI-ANNUAL MEETING – April 2019

Role of Redundant Shear

-θ≥15°

<mark>--</mark> 2°≤θ<15°

Homogenous microstructure through thickness after 5 ARB cycles in <u>1mm thick samples</u>

Kamikawa et al., Acta Materialia, 2007.

SEMI-ANNUAL MEETING – April 2019

Room Temperature

SEMI-ANNUAL MEETING - April 2019

AI 1100 ARBed Samples

Edge Crack Mitigation

SEMI-ANNUAL MEETING - April 2019

5 32 ~4.0 ~96.9% ~500 nm

TEM-BF

Edge Cracking in Literature

Al 5083 rolled at 200 °C

Saito et al., *Acta Materialia*, 1999. SEMI-ANNUAL MEETING – April 2019

Center Proprietary – Terms of CANFSA Membership Agreement Apply

N. Tsuji, Severe Plastic Deformation, 2006.

Edge Crack Mitigation

Imposing Lateral Constraint

0.080" Al 1100 window

Constrained

Unconstrained

4 ARB Cycles ~0.035" spread 2 ARB Cycles ~0.060" spread

SEMI-ANNUAL MEETING – April 2019

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Imposing Lateral Constraint

Lateral constraint keeps spreading below 0.040"

3 Constraints Needed

Edge Guides Align Material to Mill Wire Binding Prevent relative movement Lateral Constraint Prevent lateral spreading

Superplastic Tensile Design

Temperatures:200 – 500 °C

Strain Rates:

Anticipated loads:

10 – 100 lbs

 $10^{-2} - 10^{-4} \text{ s}^{-1}$

Control modes:

Constant crosshead Constant strain rate

Superplastic Tensile Design

Variation in gauge aspect ratio

Variation in grip aspect ratio

Material flow leads to:

- elevated flow stress
- elevated strain
- inaccurate strain rates

Abu-Farha et al., Experimental Mechanics, 2011.

SEMI-ANNUAL MEETING – April 2019

R 1.5 + /- .05 Typ.

Superplastic Tensile Design

Clamp section 25.0 From ASTM E2448, dimensions in mm Features:

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Drop-in placement

During testing

- drop-in specimen placement

Shoulders

Gauge section

25.0

75.0

6.0

- all load distributed through shoulder

Clamp

section

25.0

25.0

Microstructural Characterization: Electron Backscatter Diffraction (EBSD)

Al 1100 6 ARB

EBSD to <u>quantify grain size</u> and <u>study subgrain development</u>

SEMI-ANNUAL MEETING – April 2019

Microstructural Characterization: Transmission Kikuchi Diffraction (TKD)

EBSD

TKD

TKD: Less through-thickness interaction, ideal for submicron grains

EBSD.info

SEMI-ANNUAL MEETING – April 2019

- 1. Utilize knowledge of edge cracking to produce bulk material
 - → Aluminum alloys 5083, 5182, 5754
- 2. Finalize and test <u>superplasticity</u> tensile setup
- 3. Continue to develop techniques for microstructural analysis
 - \rightarrow focused ion beam (FIB) and transmission Kikuchi diffraction (TKD)
- 4. Transition to titanium alloys (CP Ti)

Center for Advanced Non-Ferrous Structural Alloys An Industry/University Cooperative Research Center

Thank you!

Brady McBride bmcbride @mines.edu

References

- [1] Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai, "Novel ultra-high straining process for bulk materials—development of the accumulative roll-bonding (ARB) process," Acta Materialia, vol. 47, no. 2, pp. 579–583, 1999.
- [2] R. M. Cleveland, A. K. Ghosh, and J. R. Bradley, "Comparison of superplastic behavior in two 5083 aluminum alloys," *Materials Science and Engineering A*, vol. 351, no. 1-2, pp. 228–236, 2003.
- [3] N. Tsuji, K. Shiotsuki, and Y. Saito, "Superplasticity of ultra-fine grained Al-Mg Alloy by ARB," *Materials Transactions*, vol. 40, no. 8, pp. 765–771, 1999.
- [4] N. Kamikawa, T. Sakai, and N. Tsuji, "Effect of redundant shear strain on microstructure and texture evolution during accumulative roll-bonding in ultralow carbon IF steel," Acta Materialia, vol. 55, pp. 5873-5888, 2007.
- [5] M.G. Nicholas, D.R. Milner, Pressure Welding at Elevated Temperatures, British Welding Journal. 8 (1961) 375–383.
- [6] N. Tsuji, "Production of Bulk Nanostructured Metals by Accumulative Roll Bonding (ARB) Process," in Severe Plastic Deformation: Toward Bulk Production of Nanostructured Materials, B. Altan, Nova Science, 2006, pp. 545-565.
- [7] F. Abu-Farha, M. Nazzal, and R. Curtis, "Optimum specimen geometry for accurate tensile testing of superplastic metallic materials," *Experimental Mechanics*, vol. 51, pp. 903-917, 2010.

Bonding Interfaces

Etching exaggerates bonded interfaces

Al 1100 2 ARB Cycles OIM, Keller's Reagent Al 5083 5 ARB Cycles BEI, As-Polished

Fenn Rolling Mill

5.25" cold/hot rolls100,000 lb capacity37 RPM50 SFPM

5XXX Aluminum

Alloy	Mg	Mn	Cr	Uses
5083	4.4	0.7	0.15	Marine, auto, aircraft applications
5182	4.5	0.35	<0.1	Automotive body panels, brackets
5754	3.5	<0.1	0.25	Storage tanks, pressure vessels, welded structures

100 µm

 2^{nd} phase particles \rightarrow Cavity nucleation \rightarrow Less superplastic ductility

Cleveland et al., Materials Science and Engineering A, 2003.

Microstructural Characterization: CANFSA Anodizing for LOM

Precipitation Grain Contrast 16 hr at 120 C

Cleveland et al., Materials Science and Engineering A, 2003.

Anodizing for quick analysis of grain and deformation structures without <u>thermally affecting microstructure</u> Anodizing with Barker's Reagent

Al 5083, 68% reduction

Recrystallized Al 5083

Project 31: Accumulative Roll Bonding of Al and Ti Sheets Toward Low Temperature Superplasticity

Student: Brady McBride

Faculty: Kester Clarke

Industrial Partners: Boeing (Ravi Verma), LANL (John Carpenter)

Project Duration: August 2017 – May 2021

Achievement

 Development of a process capable of producing ultra-fine grained microstructures in AI and Ti alloys that exhibit superplasticity at lower temperatures than conventional processing methods.

Significance and Impact

 Low temperature superplasticity would enhance superplastic forming operations by reducing cycle time as well as reducing costs related to heating and die wear.

Research Details

 Improved superplastic formability by means of reduced temperature and increased forming strain rates will reduce operating costs and prolong die life.

(CANF?

Cross-section of roll bonded Al 1100 showing interfaces between 128 individual layers of material.

Project 31: Accumulative Roll Bonding of Al and Ti Sheets Toward Low Temperature Superplasticity

CANFSA CENTER FOR ADVANCED NON-FERROUS STRUCTURAL ALLOYS

Student: Brady McBride

Faculty: Kester Clarke

Industrial Partners: Boeing (Ravi Verma), LANL (John Carpenter)

Project Duration: August 2017 – May 2021

Program Goal

 Investigate enhanced superplasticity of ultra fine grained materials produced by accumulative roll bonding

Approach

 Develop a process for accumulative roll bonding and determine microstructural mechanisms related to superplasticity

Benefits

 Improved superplastic formability by means of reduced temperature and increased forming strain rates will reduce operating costs and prolong die life

Cross-section of roll bonded AI 1100 showing interfaces between 128 individual layers of material.