

Center for Advanced Non-Ferrous Structural Alloys An Industry/University Cooperative Research Center

Project 30: Microstructural Development of Metallic Alloys during Rapid Solidification

Spring 2019 Semi-Annual Meeting Iowa State University, Ames, IA April 3-5, 2019

Student: Chloe Johnson (Mines)

Faculty: Amy Clarke (Mines).

Industrial Mentors: Los Alamos National Lab, Boeing

Other Participants: Yaofeng Guo (Mines), Joe Jankowski (Mines), Gus Becker (Mines), Francisco Coury (UFSCAR), Joe McKeown (LLNL)

Project 30: Microstructural Evolution of Metallic Alloys during Rapid Solidification

 Student: Chloe Johnson (Mines) Advisor(s): Amy Clarke (Mines) 	Project Duration PhD: August 2017 to May 2021
 <u>Problem</u>: Rapid solidification results in novel assolidified microstructures and the evolution is not well understood. <u>Objective</u>: Understand the relationship of rapid solidification conditions to development of metastable phases, novel microstructures, and grain morphology effects in aluminum alloys. <u>Benefit</u>: Inform microstructural prediction to improve alloy design and solidification conditions for rapid solidification processes (e.g. additive manufacturing (AM)). 	 Recent Progress Image analysis of Dynamic Transmission Electron Microscopy (DTEM) data of AI-Ge alloys Initial processing of AI-Ag DTEM data Initial look at microstructure from Elementum 3D AI 6061 Metal Matrix Composite (MMC) alloy designed for AM Experiments performed on AI-Ag and AI 6061 MMC using AM simulator at the Advanced Photon Source (APS) at Argonne National Lab (ANL)

Metrics			
Description	% Complete	Status	
1. Literature review & alloy selection	45%	•	
2. In/ex-situ characterization of metastable phase formation in rapidly solidified, faceting AI-Ge alloys		•	
3. Investigation of novel rapidly solidified structures in binary and ternary model AI alloys		•	
4. Evaluation of grain size effects in AI MMC alloys via in/ex-situ rapid solidification		•	

Industrial Relevance

- Solidification conditions have a significant impact on final microstructure
- Rapid solidification generates novel microstructures, metastable phases, and a variety of grain morphologies
- Understanding processing/ microstructure relationships for rapid solidification will inform manufacturing processes

Post-mortem TEM image of Al-Cu alloy film after DTEM solidification. J.T. McKeown *et al.*, *Acta Materialia* (2014).

- Observed trends in Al-Ge microstructures from DTEM experiments
- Initial results from AM simulator at APS
 - -Al 6061 MMC alloy
 - -Al-Ag (model alloy)
- Future Work

Previous Work: Development of CANFSA Metastable Phase Diagram

Proposed metastable phase diagram for monoclinic (M) phase. T. Laoui & M. J. Kaufman, *Met Trans A* (1991).

Previous Work: Development of Metastable Phase Diagram

Center Proprietary – Terms of CANFSA Membership Agreement Apply

6

FERROUS STRUCTURAL ALLOYS

DTEM of AI-Ge: Our Interests

1000

- Explore proposed metastable phase diagram that includes M phase
- Investigate phase transformation pathway and if M phase remelts in the liquid prior to the formation of β phase at compositions above 50.5 at. %

Proposed metastable phase diagram for monoclinic (M) phase. T. Laoui & M. J. Kaufman., *Met Trans A* (1991).

Dynamic Transmission Electron Microscopy (DTEM): Sample Prep

Schematic of sample preparation for DTEM, consisting of a thin film sputter deposited onto a Si-N substrate with a window in the center

CAN

20US STRUCTURAL ALLOYS

J. D. Roehling et al., Acta Met (2017).

Dynamic Transmission Electron CANFSA Microscopy (DTEM): Technique

microsecond intervals

SEMI-ANNUAL MEETING – Spring 2019

AI-Ge Sample Compositions

SEMI-ANNUAL MEETING - Spring 2019

- Sample compositions were targeted to be to greater and less than 50.5 at. % Ge
- The compositions tested were 46, 58, 63, 64-66, and 70-76 at. % Ge

Observed Microstructure Below CANFSA 50.5 at. % Ge

SEMI-ANNUAL MEETING - Spring 2019 **Center Proprietary – Terms of CANFSA Membership Agreement Apply**

Microstructures Above 50.5 at. % Ge: Single Region

HAADF STEM image taken by Chloe Johnson

Microstructural Selection: Multiple vs. Single Regions

Consider 58 at. % Ge:

- Solidification starts with the formation of β particles at various regions in the melt pool
- If higher volume fractions form, Al rich dendrites form lowering the constitutional undercooling in the remaining liquid
- If lower volume fractions form, dendrites do not form and the undercooling is high enough for a metastable eutectic to form

Microstructures Above 50.5 at. % Ge: Highest Ge Content

HAADF STEM image taken by Yaofeng Guo

SEMI-ANNUAL MEETING – Spring 2019 Center Proprietary – Terms of CANFSA Membership Agreement Apply

Does M Phase Remelt Above 50.5 at. % Ge?

Increasing

Time

- Again, see areas of what could be M phase
- These disappear and β particles form

- DTEM allows for the examination of microstructural evolution dynamics
- Local solute conditions in the liquid dictate the microstructure in the melt pool
- So far, results are consistent with the metastable phase diagram and findings of T. Laoui & M. J. Kaufman
- Remelting of M phase above 50.5 at. % Ge is currently inconclusive, but further DTEM experiments will be performed
- Identification of eutectics above 58 at. % Ge needs to be performed to help inform extension of metastable eutectic

APS Additive Manufacturing Simulator Set-up

1570 µs

1870 µs

90

Azimuthal angle, $\Phi(^{\circ})$

60

120

Synchrotron x-ray imaging of a Ti-6Al-4V plate sample in laser melting processes and solidification rate measurements. C. Zhao et al., *Scientific Reports (*2017).

SEMI-ANNUAL MEETING - Spring 2019

Grain Size Control via Innoculants in AM Alloy Powders

J. H. Martin et al. *Nature* (2017).

Grain Size Control via Innoculants in AM Alloy Powders

SEMI-ANNUAL MEETING - Spring 2019

Al 6061 MMC Alloy Designed for CANFSA AM: Initial Characterization

BSE SEM image of Al 6061 MMC alloy powder taken by Chloe Johnson

SEM image of Al 6061 MMC AM build taken by Chloe Johnson

APS AM Simulator Animations: Al 6061 MMC Alloy vs. Wrought 6061

Animation of laser pass on Wrought 6061 plate (no powder) 100 W, 0.5 m/s

Animation of laser pass on Al 6061 MMC build + Al 6061 MMC powder 100 W, 0.5 m/s

SEMI-ANNUAL MEETING – Spring 2019 Center Proprietary – Terms of CANFSA Membership Agreement Apply

Al-10 at. % Ag Model Alloy: Goals and Experimental Plans

- Investigate affects of microsegregation/solute distribution on final microstructure in rapid solidification, as well as inform solidification models
- Initial rapid solidification experiments were performed using DTEM, which generates high G & R conditions
- Recent experiments using the AM simulator generated lower G & high R values, expanding the range of solidification conditions studied

Al-10 at. % Ag Model Alloy: Animation from AM Simulator

0.00000 s

Animation of laser pass done using the AM simulator on Al-10 at. % Ag 360 W, 1 m/s

Future Work

• Al Ge

- Continue identification of microstructural trends
- DTEM remelting of M phase
- Further analysis of local solute conditions
- Al 6061 MMC alloy for AM
 - Post-mortem microstructural evaluation on APS samples
 - Further analysis of grain structure in as-built samples
- Al Ag
 - Post-mortem microstructural evaluation on APS samples
 - Further DTEM experiments
 - Comparison of microstructures from various solidification conditions

Thank you very much!

Chloe Johnson <u>chloejohnson@mines.edu</u>

SEMI-ANNUAL MEETING – Spring 2019 Center Proprietary – Terms of CANFSA Membership Agreement Apply