

Center for Advanced **Non-Ferrous Structural Alloys** An Industry/University Cooperative Research Center

Project 37-L: Advanced Engineered Coatings with Extended Die Life for Tooling

Spring 2018 Semi-Annual Meeting Iowa State University, Ames, IA April 3-5, 2019

Student: Nelson Delfino de Campos Neto (Mines) Faculty: Steve Midson, Andy Korenyi-Both, Michael Kaufman (Mines) Industrial Mentors: Paul Brancaleon (NADCA)

Project 7-L: Advanced Engineered Coatings with Extended Die Life for Tooling

 Student: Nelson Delfino de Campos Neto (Mines) Advisor(s): S. Midson; A. Korenyi-Both, M. Kaufman (Mines) 	Project Dur PhD: August 2018	uration I8 to July 2023						
 <u>Problem:</u> Molten aluminum tends to solder to die faces in die casting process and is used a large amount of lubricant in the attempt to reduce the adhesion but reduces the parts quality. <u>Objective:</u> Identify PVD coatings to be applied to die casting dies to avoid the molten aluminum soldering and understand the adhesion mechanisms involved. <u>Benefit:</u> Increase die casting parts quality, eliminate the use of lubricants, extend the dies life and reduce cost-per-parts. 	 solder to die used a large o reduce the lity. be applied to die minum soldering anisms involved. quality, eliminate es life and reduce 							
Metrics								
Description	% Complete	Status						
1. Literature review and development of an improved adhesion test process by incorporating a mechanism to pressurize/quick fill the lice	20%	•						
2. Identification of the mechanisms that rules the adhesion behavio	10%	•						
3. Identification of a working layer coating that is free of molten alur	5%	•						
4. Development of a coating architecture (single or multi-layer) that	0%	•						
die coatings to allow them to survive for as long as the die casting of	die itself (□100,000 shots)							

SEMI-ANNUAL MEETING - 4/3/2018

Industrial Relevance

- Reducing or eliminating lubricant spray will:
 - Significantly *improve the quality* of the die castings
 - Reduce gas porosity and scrap
 - Used in higher performance applications

-<u>Reduce costs</u>

- Eliminate purchase costs for lubricants
- Reduce effluent clean-up costs
- Significantly extend die life

Improve productivity

• Faster cycle rates

Project Tasks

- 1. Develop improved adhesion test
- 2. Define mechanism controlling wetting and adhesion of molten aluminum to coating
- 3. Develop a coating architecture to provide long life
- 4. Conduct in-plant trials
- 5. Create guidelines for depositing the coating on tooling

Previous Adhesion Test

- Previous project developed a laboratory test
 - To measure adhesion of aluminum to coating

• Drawback:

 Top pouring can carry the oxide layer from the upper surface of the molten aluminum into the crucible to contact with the material coupon

SEMI-ANNUAL MEETING - 4/3/2018

1st Proposed Solution

 Development of a setup to allow bottom pouring and avoid the top oxide layer from the molten alloy be in contact with material coupon

Bottom Pouring at Resistance Furnace

- Entire unit is placed into room temperature resistance furnace
- Aluminum pieces are placed into upper chamber
- Unit is heated to 700°C (~50 minutes)

- Stopper rod is removed
- Aluminum falls into lower chamber and contacts substrate test material
 - Surface oxide remains behind in upper chamber

1st Proposed Adhesion Test

- Molten aluminum is held in contact with substrate for controlled period of time
- Temperature is recorded during entire experiment
- Entire unit is slowly cooled to room temperature
- Setup is disassembled
- Sample can be tensile tested

SEMI-ANNUAL MEETING - 4/3/2018

Drawbacks of this approach

- Carbon powder was observed between solidified aluminum and steel substrate
- Most likely originated from walls of graphite crucibles
- Fell onto upper surface of steel substrate during heating
- Prevented contact between molten aluminum and substrate

Task 1: Improved Adhesion Test

Graphite

- Use induction melting
- Rapid heating to melt aluminum (~10 minutes)
 - Less oxidation and disintegration of crucible walls

Modified Test Apparatus

- After aluminum has been poured into lower chamber
- Lower section is placed into resistance furnace pre-heated to 700°C

1st Test Using Induction Melting

- Melted aluminum in induction coil
- Pulled stopper rod
- Molten aluminum fell onto room temperature substrate and solidified

No carbon layer

Al oxides stayed at the melting crucible

Planned Initial Experiments

- Planned initial experiments
 - -700 °C; 3 different holding time
 - 15mins, 1 hr, 4 hrs
 - -Uncoated H13 steel substrate
 - Ground to 600 mesh SiC finish (
 - Polished to 1 μ m
 - -PVD coatings
 - ZrN

Temperature Profiles

 Same average behavior in temperature profile for H13 steel substrate after bottom pouring and placed at 700 °C pre-heated resistance furnace

Bare H13 (ground 600 mesh)

- Reaction occurred between molten aluminum & H13 steel substrate
 - Area of reaction was only small after 15 minutes
- Aluminum separated from steel during cooling to room temperature

H13 Steel substrates

Solidified Al cylinders

AI + Bare H13 Substrate: Results from Bo Wang

- Bo Wang saw a similar phenomena
 - Cracking between the solidified aluminum and bare H13 substrate

SEMI-ANNUAL MEETING - 4/3/2018

Wang's Aluminum Adhesion Test Results

#	Material	Supplier	Method &	Composition	Thickness	Breaking Strength
1	41C N	1			1.7	
1	AICTN	1	CAE	$AI_{0.67}Cr_{0.33}N_x$	1.7	0
2	AlTiN	2	CAE	$Al_{0.68}Ti_{0.32}N_x$	1.5	0
3	CrWN	2	Nitriding + CAE	$Cr_{0.97}W_{0.03}N_x$	6.7	0
4	AlTiN	3	CAE	Al _{0.62} Ti _{0.38} N _x	3.3	0*
12a	AlCrN	5	Nitriding + CAE	_		0*
5	TiAlN	3	CAE	Ti _{0.56} Al _{0.44} N _x	1.8	0.01
12b	AlCrN	5	CAE			0.04
6	CrN	4	CAE + Fine Polish	CrN _x	4.4	0.07
7	H13	_				0.12
8	Cr	CSM	MS	Cr	2.2	0.12
9	CrWN	4	CAE + Fine Polish	$Cr_{0.95}W_{0.05}N_x$	4.2	0.26
10	CrN	5	Filtered CAE	CrN _x	5.0	0.78
11	TiN	CSM	MS	TiNx	0.6	0.84
12	AlCrN	5	CAE + Fine Polish	$Cr_{0.54}Al_{0.46}N_x$	5.1	1.30
13	TiB_2	6	MS	TiB _x	1.5	2.54

H13 did not have the highest breaking strength

Possibly due to cracking at interface

SEMI-ANNUAL MEETING - 4/3/2018

Polished H13 (1µm diamond)

- Similar reaction occurred between molten aluminum & H13 steel substrate
 - Area of reaction was much larger for 15 minute sample
- Aluminum separated from steel during cooling to room temperature

H13 Steel substrates

Solidified Al cylinders

Influence of Surface Finish: Published Data

- Testing performed by Gobber et al. in Italy
 - Examined impact of surface roughness on adhesion of molten Al to H13 steel
 - Rougher H13 substrate resulted in less contact between solidified aluminum and steel
- Similar to our results
 - We saw less adhesion/reaction after 15 minutes for the rougher sample

Task 2: Adhesion Mechanism CANE

- Understand the inter-diffusion behavior between molten aluminum and steel
- Simulation packages can provide a powerfull resource
- CALPHAD method
 - Using DICTRA module of Thermo-Calc
- Initially evaluated a simplified diffusion-couple model
 - Pure Al in contact with pure Fe
 - Held at 680°C for different times

DICTRA Simulation

Starting condition

SEMI-ANNUAL MEETING - 4/3/2018

20 seconds at 680 °C

 Shows volume fraction of three phases formed at interface between liquid aluminum and solid iron

SEMI-ANNUAL MEETING - 4/3/2018

Volume Fraction

- Shows volume fraction change of each phase with time
 - Al_5Fe_2 initially forms
 - At about 20 seconds, Al₁₃Fe₄ had the highest volume fraction
 - Longer times, Al₂Fe had the highest volume fraction

Bo Wang's results using uncoated H13 steel

- Bo Wang detected Al₁₃Fe₄
- Did not detect Al₂Fe or Al₅Fe₂
- Need to increase the complexity of the DICTRA simulation

SEMI-ANNUAL MEETING - 4/3/2018

Summary & Conclusions

- Developed a modified adhesion test using induction heating: initial tests
 - 600 mesh ground H13: aluminum soldering occurred, but the interface cracked separating the solidified aluminum and the steel
 - 1 $\mu{\rm m}$ polished H13: same results, but more aluminum soldered with the 15 minutes test

Summary & Conclusions

- Adhesion mechanism: Thermo-Calc simulations
 - Simplified model predicted one of the phases experimentally observed in the project performed by Bo Wang
 - Use DICTRA to predict diffusion profiles
 - Use the Property Model Calculation module to evaluate wetting of coatings by molten aluminum
 - Simulation can be a powerful resource to predict suitable coatings

Future Work

- Literature review
 - PVD coatings currently used by die casters and other industries
 - Chemical interactions between liquid metals and solid materials
 - Wetting of solids by liquid metals
 - Brazing
- Experimental work
 - Uncoated H13 with rougher surface (ground 80 mesh SiC)
 - PVD coated samples: ZrN, carbides
- Characterization
 - Examine the phases formed at the interface between the solidified aluminum and H13 steel substrate

Progress (Gantt chart)

8/18 2/19 9/19 3/20 10/20 4/21 11/21 6/22 12/22 7/23

PVD coatings and architetures 2. Improved adhesion test Development of the test and Laboratory trials 3. Mechanisms that rules the adhesion behavior Identification of relations between mechanisms Propose a correlation to predict adhesion behavior 4. PVD Coatings Find the best working layer and architecture Identify the coating life 5. Guidelines for coating system on tooling 6. In-plant trials Writing Report

 This research is sponsored by the DLA – Troop Support, Philadelphia, PA and the Defense Logistics Agency Information Operations, J62LB, Research & Development, Ft. Belvoir, VA

Center for Advanced Non-Ferrous Structural Alloys An Industry/University Cooperative Research Center

Thank you!

Nelson Delfino de Campos Neto ndelfino@mymail.mines.edu

Center for Advanced **Non-Ferrous Structural Alloys** An Industry/University Cooperative Research Center

Project 37-L: Advanced Engineered Coatings with Extended Die Life for Tooling

Student: Nelson Delfino de Campos Neto

Faculty: Steve Midson; Michael Kaufman

Industrial Partners: Paul Bracaleon (NADCA)

Project Duration: Aug. 2018 – July 2023

Achievement

Identify PVD coatings to be applied to die casting dies to avoid the molten aluminum soldering and understand the adhesion mechanisms involved.

Significance and Impact

Increase die casting parts quality, eliminate the use of lubricants, extend the dies life and reduce cost-per-parts.

Research Details

Development of an advanced laboratory test to simulate the aluminum die cast process in order to find the best PVD coatings and understand the adhesion mechanisms involved.

Induction Melting **Bottom Pouring**

Place in a furnace

Holding time at 700 °C

Project 37-L - Advanced Engineered Coatings with Extended Die Life for Tooling

Student: Nelson Delfino de Campos Neto Faculty: Steve Midson; Michael Kaufman Industrial Partners: Paul Bracaleon (NADCA) Project Duration: Aug. 2018 – July 2023

Achievement

 Identify PVD coatings to be applied to die casting dies to avoid the molten aluminum soldering and understand the adhesion mechanisms involved.

Significance and Impact

 Increase die casting parts quality, eliminate the use of lubricants, extend the dies life and reduce cost-per-parts.

Research Details

 Development of an advanced laboratory test to simulate the aluminum die cast process in order to find the best PVD coatings and understand the adhesion mechanisms involved.

Place in a furnace

Holding time at 700 °C

Project 37-L - Advanced Engineered Coatings with Extended Die Life for Tooling

Student: Nelson Delfino de Campos Neto Faculty: Steve Midson; Michael Kaufman Industrial Partners: Paul Bracaleon (NADCA) Project Duration: Aug. 2018 – July 2023

Program Goal

 Identify PVD coatings to be applied to die casting dies to avoid the molten aluminum soldering and understand the adhesion mechanisms involved.

Approach

 Develop an advanced laboratory test to simulate the aluminum die cast process in order to find the best PVD coatings and understand the adhesion mechanisms involved.

Benefits

 Increase die casting parts quality, eliminate the use of lubricants, extend the dies life and reduce cost-per-parts.

Place in a furnace

Holding time at 700 °C