

Center for Advanced **Non-Ferrous Structural Alloys** An Industry/University Cooperative Research Center

Project 33B-L: In-Situ Studies of Strain Rate Effects on Phase Transformation and Microstructural Evolution in Multi-Principal Element Alloys

Spring 2019 Semi-Annual Meeting Iowa State University, Ames, IA April 3-5, 2019

Student: John Copley (Mines) Faculty: Amy Clarke (Mines) Industrial Mentors: TBD

Other Participants: Francisco Coury (UFSCAR), Jonah Klemm-Toole (Mines), Yaofeng Guo (Mines)

Project 33B-L: In-Situ Studies of Strain Rate Effects on Phase Transformation and Microstructural Evolution in Multi-Principal Element Alloys

 Student: John Copley (Mines) Advisor(s): Amy Clarke (Mines) 	Project Duration MS: September 2018 to May 2020
 <u>Problem</u>: The effects of strain rate and state and temperature on the TRIP/TWIP behavior exhibited by MPEAs are not well understood. <u>Objective</u>: Determine the relationship between alloying, strain rate and strain state effects on the evolution of deformation twins and deformation induced phase changes. <u>Benefit</u>: Improved understanding of TRIP/TWIP behavior seen in other materials, alloy design for specific applications, especially blast resistance. 	 <u>Recent Progress</u> Thermo-Calc Modelling of TRIP likely regions of CoCrNi ternary In-situ diffraction during dynamic testing at the Advanced Photon Source (APS) at Argonne National Lab

Metrics			
Description	% Complete	Status	
1. Literature review	40%	•	
2. Quasi-Static Testing	15%	•	
3. Dynamic Testing	25%	•	
4. Multi-scale in-situ imaging and diffraction	25%	•	

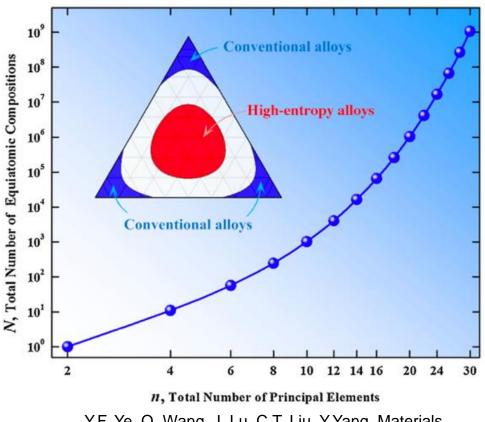
Industrial Relevance

- Understanding of TRIP/TWIP of MPEAs during high rate deformation
 - New strategies to design deformation mechanisms
 - Drive development of alloys for blast-resistance and performance in extreme environments
- Fundamental understanding of TRIP/TWIP
 - Applications to more commonly used Advanced High Strength Steels and some Ti alloys

Project Vision

Dynamic Fractu DTEM during Highrate Deformation In-situ pRad (Gas Gun) Strain Rate In-situ X ray Imaging and Diffraction (Kolsky Bar & Gas Gun) TEM, ASTAR, XRD 1800 Quasi-static during Quasi-static 7.62 mm Deformation **Taylor Anvil** of Bulk QP3Mn 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 True Strain Dynamic MTS High-Rate Response 100 µm Static Microstructural **Gleeble Testing** Characterization ≈ cm ≈ nm ≈ µm ≈ mm Length Scale

State-of-the-art, multi-scale microstructural characterization with electrons, x-rays, and protons of **TRIP/TWIP** in MPEAs for blast resistance


Figure courtesy of Dr. Amy Clarke

Center Proprietary – Terms of CANFSA Membership Agreement Apply

MPEAs

- No definable main element
 - Equiatomic, or
 - Several (>2) components present in very high concentrations
- Almost infinite combinations
- Commonly referred to as High Entropy Alloys (HEAs) and/or Complex Concentrated Alloys (CCAs)

Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y.Yang. Materials Today, 2016, 19(6):349-362

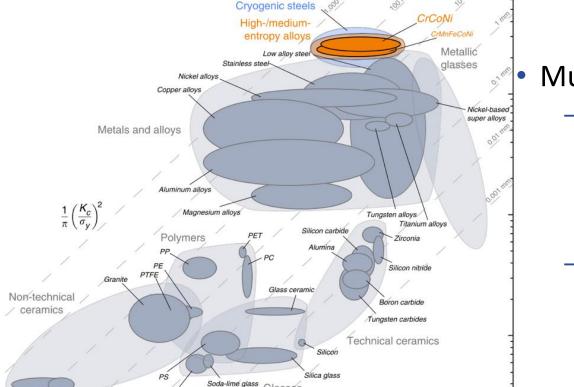
SEMI-ANNUAL MEETING – Spring 2019

Concrete Cement

10²

10¹

10⁰


10⁰

Fracture toughness, $K_{\rm c}$ (MPa m^{1/2})

Center Proprietary – Terms of CANFSA Membership Agreement Apply

10³

Project Background: MPEAs

Glasses

10²

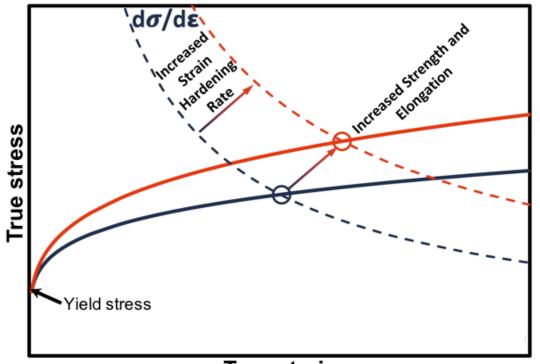
B. Gludovatz, et al., Nature Communications, 2016, 7:10602

Yield strength, σ_{v} (MPa)

Borosilicate glass

10¹

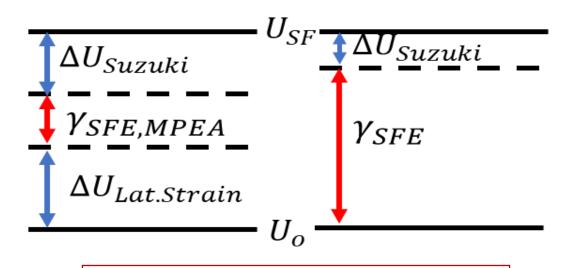
Multi-Principal Element


- Broader definition than HEAs
 - Strength and toughness do not scale with entropy
- CoCrNi Family
 - Fails HEA criteria
 - Toughest known CCAs

Twinning and Transformation Induced Plasticity

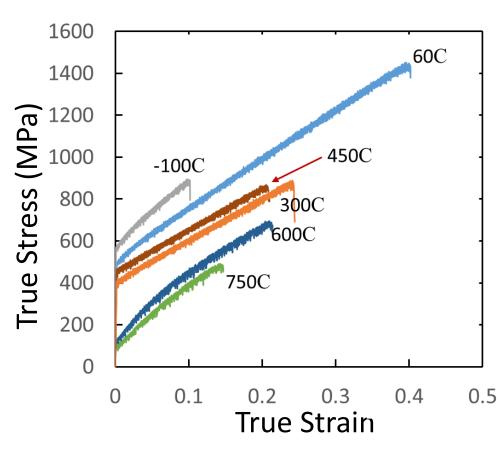
- Deformation accommodated by change in local atomic stacking
- Increased work hardening rates
 - Burgers vectors are not conserved at twin or phase interfaces
 - The "Dynamic" Hall-Petch Effect
 - High work hardening rates delay instability
- Delayed Instability
 - Increased UTS, elongation
 - Improved toughness

True strain

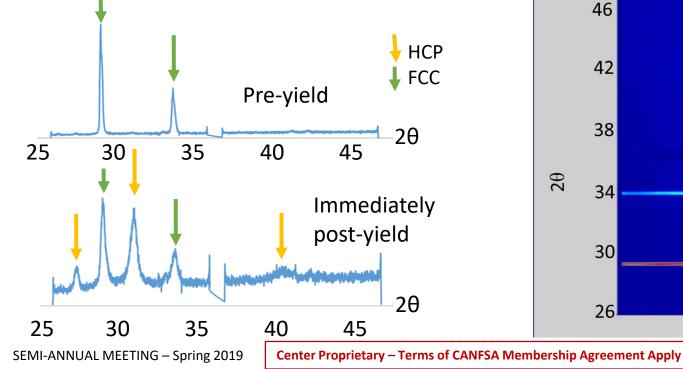

Figure courtesy of Dr. Kester Clarke

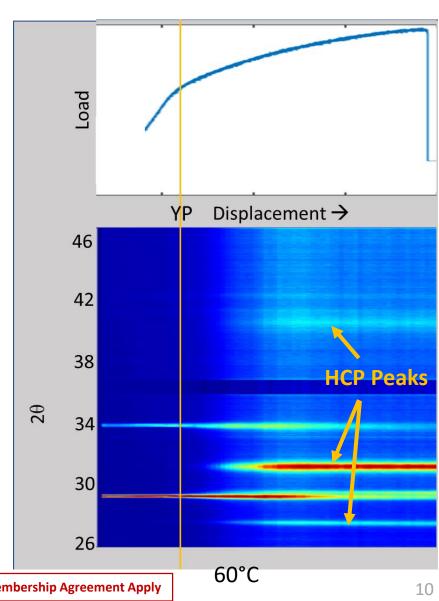
7

Why are MPEAs Good Candidates for TRIP/TWIP


- Shown to occur in some MPEAs
 - CoCrNi, FeCoCrNi, FeMnCoCr, FeMnCoCrNi
- High occurrence of twins is expected (low SFE)
 - Suzuki Interaction
 - Lattice Distortion

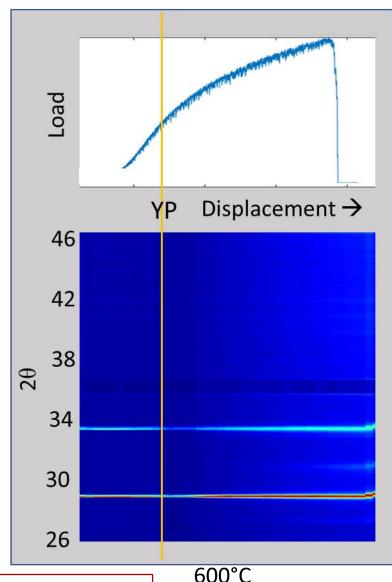
Project Review:


- Quasi-Static Thermo-Mechanical Testing (Co₅₅Cr₄₀Ni₅)
 - Gleeble thermo-mechanical simulator during synchrotron xray diffraction
 - Spray formed samples
 - Porosity led to premature failure

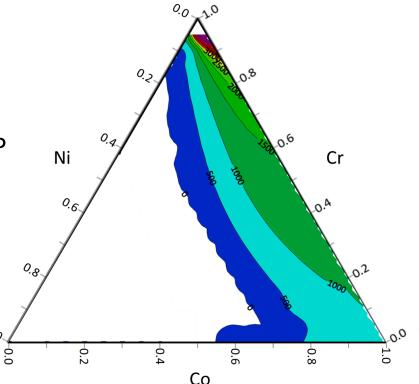


Project Review:

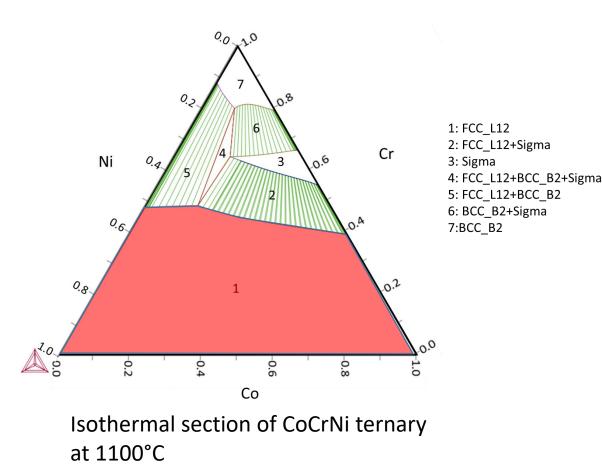
- Low Temperature Deformation (Co₅₅Cr₄₀Ni₅):
 - Transformation from FCC→HCP as strain increases
 - Onset of transformation at or near yielding
 - Similar behavior from -100°C to 450°C



Project Review

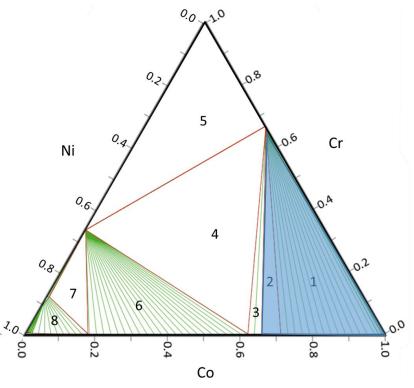

- Low Temperature Deformation (Co₅₅Cr₄₀Ni₅):
 - No evidence of transformation induced plasticity
 - Transformation suppressed at elevated temperatures
 - Some evidence of transformation to HCP after failure of sample—diffusional transformation
 - Similar behavior for tests conducted between 600°C and 900°C

Recent Progress: Thermo-Calc Modelling of T₀



- T₀: The diffusionless transformation temperature
 - Free energy and composition of HCP and FCC phases are the same
 - Diffusionless transformations (i.e. TRIP) must occur below T_0
 - High T₀ indicates the possibility of TRIP behavior at elevated temperatures
- In CoCrNi
 - T_0 is a strong function of cobalt content \rightarrow low cobalt alloys had no predicted T_0
 - T₀ is highest with large chromium concentrations

Recent Progress: Thermo-Calc Modelling for Heat Treatments



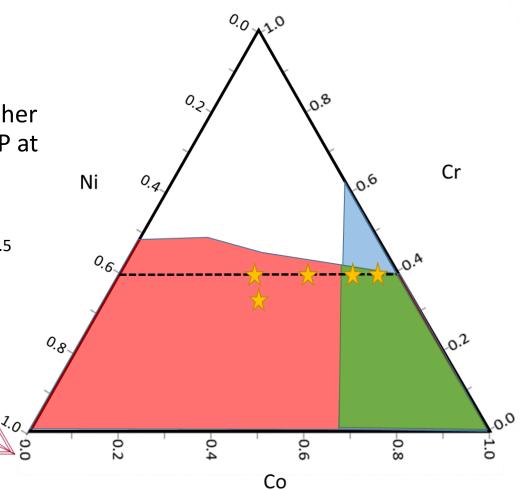
- MPEAs are susceptible to formation of brittle intermetallics
 - Want to design an alloy and heat treatment capable of achieving a single phase, FCC solid solution

SEMI-ANNUAL MEETING – Spring 2019 Cente

Recent Progress: Thermo-Calc Modelling for TRIP regions

1: HCP_A3+Sigma 2: HCP_A3+FCC_L12+Sigma 3: FCC_L12+Sigma 4: $CrNi_2+FCC_L12+Sigma$ 5: $CrNi_2+BCC_B2+Sigma$ 6: $CrNi_2+FCC_L12$ 7: $CrNi_2+FCC_L12$ 8: FCC_L12+FCC_L12#2

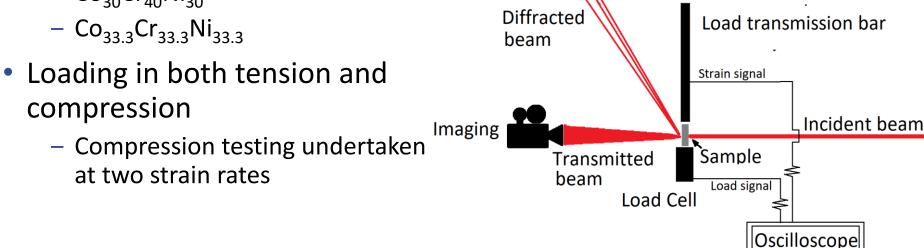
- For TRIP behavior, there must be an energy saving from transforming.
 - Must transform to the stable or metastable phase
 - Likely regions for
 FCC→HCP TRIP will be
 near stable HCP phase
 regions


Isothermal section of CoCrNi ternary at 25°C

SEMI-ANNUAL MEETING – Spring 2019

Alloy Design Space

- TRIP capable alloys should be in or near the green region.
 - Alloys for study have been selected along Co_{60-x}Cr₄₀Ni_x
 - High chromium alloys for higher
 T₀ values → possibility of TRIP at
 high temperatures
 - Also nears the high strength and toughness Co_{27.5}Cr₄₅Ni_{27.5} predicted by Dr. Francisco Coury's EARS model
 - Alloys selected:
 - Co₅₅Cr₄₀Ni₅
 - Co₅₀Cr₄₀Ni₁₀
 - Co₄₀Cr₄₀Ni₂₀
 - Co₃₀Cr₄₀Ni₃₀
 - Co_{33.3}Cr_{33.3}Ni_{33.3}

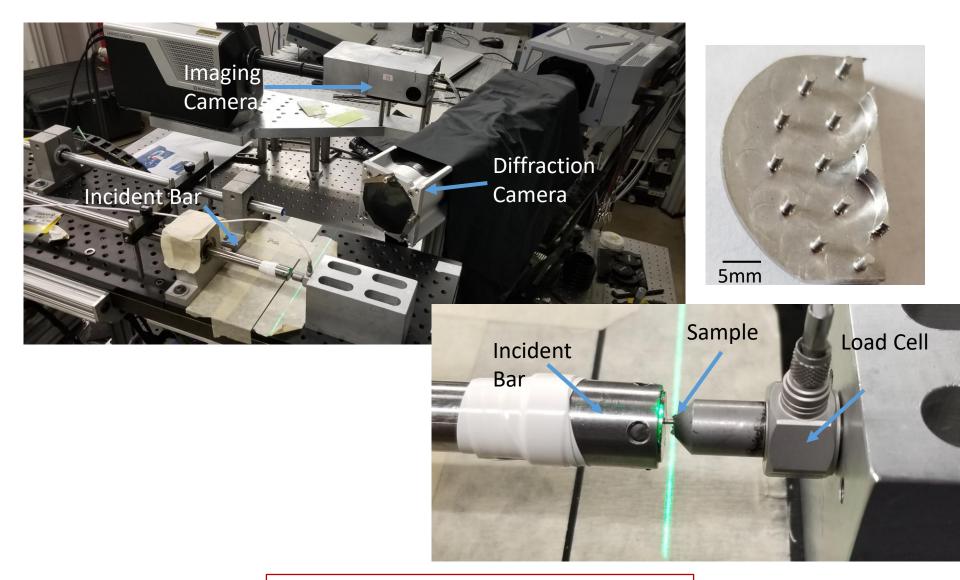

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Thanks to Ben Ellyson for the figure

0000

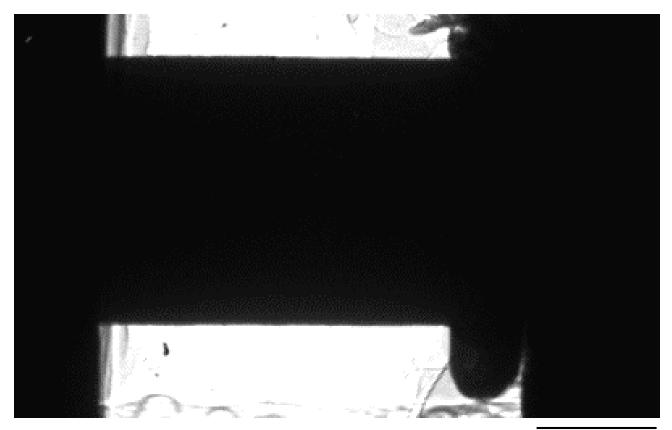
In-situ Dynamic Testing at APS

- In-situ Kolsky Bar, X-ray imaging and diffraction experiments
- Alloys tested:
 - $Co_{50}Cr_{40}Ni_{10}$
 - $Co_{40}Cr_{40}Ni_{20}$
 - $Co_{30}Cr_{40}Ni_{30}$

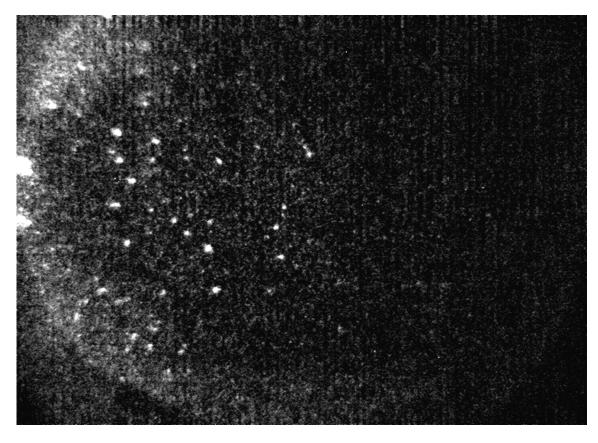

Pneumatic

Actuator

Diffraction



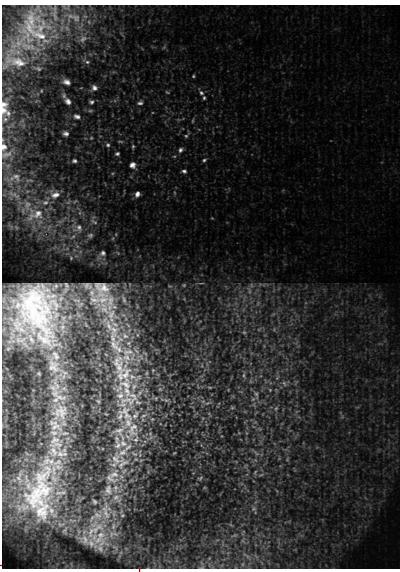
Preliminary APS Results



Dynamic Compression of Equiatomic CoCrNi MPEA 0.5mm

SEMI-ANNUAL MEETING – Spring 2019 Center Proprietary – Terms of CANFSA Membership Agreement Apply

APS Diffraction Data

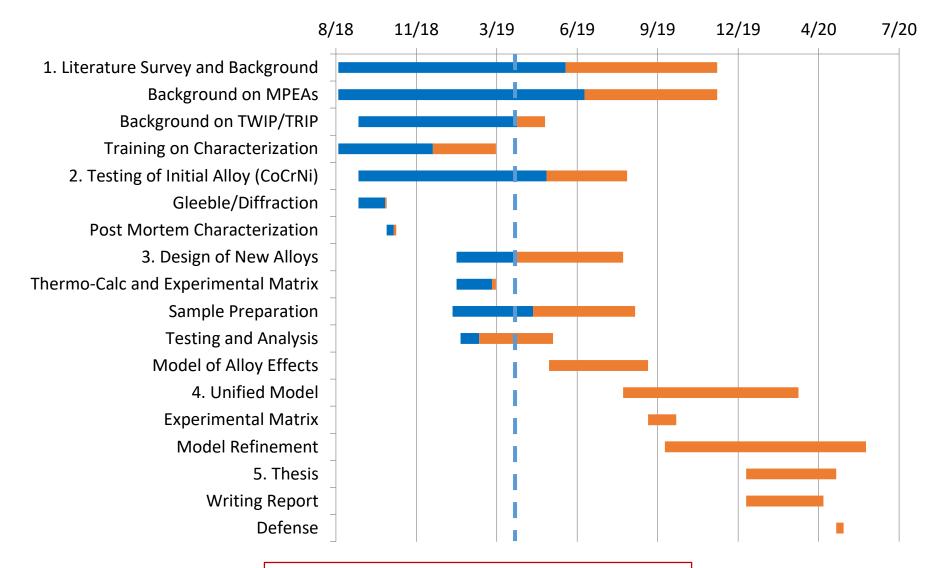


• Example diffraction data from CoCrNi MPEA during dynamic testing at APS

Diffraction Results

- Initial observation of the data suggests refinement in crystallite domain size
 - Few scattered points evolved into full, continuous rings
 - Either development of dislocation cells or twins
 - Both Co_{27.5}Cr₄₅Ni_{27.5} and the equiatomic CoCrNi have been shown to have significant deformation twinning

Future Work


- APS Data and Samples
 - Post-mortem microstructural analysis
 - EBSD and XRD
 - Processing of stress-strain data
 - Processing of diffraction data
 - Matlab program HisPoD
 - Integrate to get 1D diffraction pattern
 - Additional time at APS has been requested

Additional Mechanical Testing

- Strain rates of 10⁻²-10² s⁻¹ achievable at CSM
- Arc-melt and roll samples for larger size specimens

Gantt Chart

SEMI-ANNUAL MEETING - Spring 2019

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Center for Advanced Non-Ferrous Structural Alloys An Industry/University Cooperative Research Center

Thank you!

John Copley jacopley@mines.edu

Center Proprietary – Terms of CANFSA Membership Agreement Apply

23

Center for Advanced **Non-Ferrous Structural Alloys** An Industry/University Cooperative Research Center

Project 33B-L: In-Situ Studies of Strain Rate Effects on Phase Transformation and Microstructural **Evolution in Multi-Principal Element Alloys**

Student: John Copley

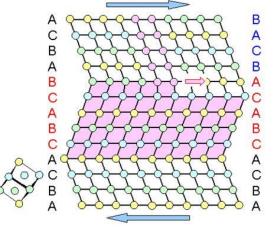
Faculty: Amy Clarke

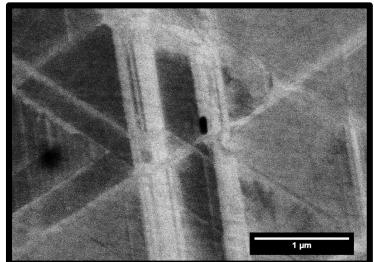
Goals

Modeling of deformation behavior as it pertains to microstructural changes in MPEAs

Significance and Impact

The TRIP/TWIP behavior seen in some MPEAs results in high work hardening behavior, resulting in an increased ductility, toughness and blast resistance.


Research Details


In-situ diffraction tests will show microstructural evolution (twins or HCP phase in a FCC matrix) which can be compared to the strain rate, strain state and alloy composition to allow alloy design for specific applications

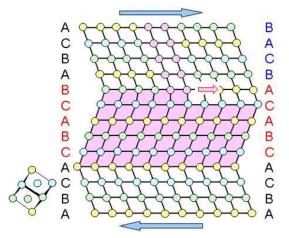
Center Proprietary – Terms of CANFSA Membership Agreement Apply

Project 33B-L: In-Situ Studies of Strain Rate Effects on Phase Transformation and Microstructural Evolution in Multi-Principal Element Alloys

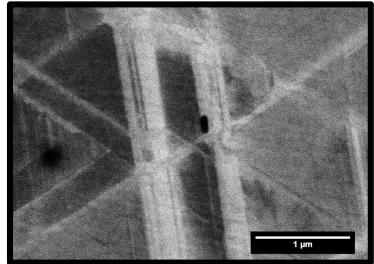
Student: John Copley

Faculty: Amy Clarke

Goals


 Modeling of deformation behavior as it pertains to microstructural changes in MPEAs

Significance and Impact


 The TRIP/TWIP behavior seen in some MPEAs results in high work hardening behavior, resulting in an increased ductility, toughness and blast resistance.

Research Details

 In-situ diffraction tests will show microstructural evolution (twins or HCP phase in a FCC matrix) which can be compared to the strain rate, strain state and alloy composition to allow alloy design for specific applications

CANFSA

SEMI-ANNUAL MEETING - Spring 2019

Center Proprietary – Terms of CANFSA Membership Agreement Apply

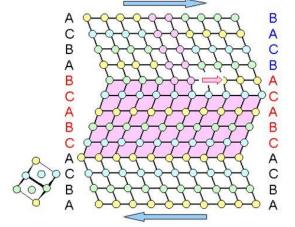
Project 33B-L: In-Situ Studies of Strain Rate Effects on Phase Transformation and Microstructural Evolution in Multi-Principal (Element Alloys

Student: John Copley

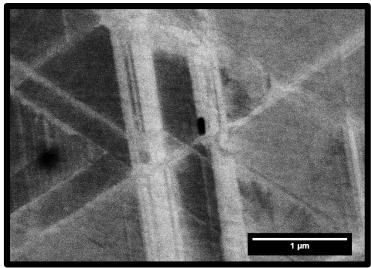
Faculty: Amy Clarke

Project Duration: Sept. 2018 – May 2020

Program Goal


 Modeling of deformation behavior as it pertains to microstructural changes in MPEAs

Approach


 In-situ diffraction tests will show microstructural evolution (twins or HCP phase in a FCC matrix) which can be compared to the strain rate, strain state and alloy composition to allow alloy design for specific applications

Benefits

• The TRIP/TWIP behavior seen in some MPEAs results in high work hardening behavior, resulting in an increased ductility, toughness and blast resistance.

CANFSA

