

Center for Advanced **Non-Ferrous Structural Alloys** An Industry/University Cooperative Research Center

Project 14: Characterization of Regions in Ti-6AI-4V Forgings with Diminished Ultrasonic Inspectability

Spring 2019 Semi-Annual Meeting Iowa State University, Ames, IA April 3-5, 2019

Student: Connor Campbell (Mines) Faculty: Terry Lowe (Mines), Kester Clarke (Mines) Industrial Mentor: Tony Yao (Weber Metals)

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Project 14: Characterization of Regions in Ti-6AI-4V Forgings with Diminished Ultrasonic Inspectability

Problem: Regions of microstructural heterogeneity <u>Recent Progress</u>	
Problem: Regions of microstructural heterogeneity <u>Recent Progress</u>	
 Cause nigh uitrasonic noise in aipna/beta fi alloys and limit inspectability via nondestructive methods. <u>Objective:</u> Extend understanding of how microstructural heterogeneity evolves during forging; characterize and quantify deformed samples, correlate to ultrasonic scattering. <u>Benefit:</u> Observations of features that increase noise may provide insight into how to optimize processes for 	characterization of forged (d+ls) 11

Metrics			
Description	% Complete	Status	
1. Survey of current knowledge	95%	•	
2. Extraction of regions of low ultrasonic quality	100%	•	
3. Sample preparation and characterization of regions of high ultrasonic quality	90%	•	
4. Characterization of regions of low ultrasonic quality	80%	•	
5. Quantification of microstructures and data analysis	20%	•	

SEMI-ANNUAL MEETING - Spring 2019

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Presentation Outline

- Industrial relevance
- Background information
 - Ultrasonic testing of (α + β) titanium alloys
- Current progress
 - Characterization of regions with high ultrasonic noise
- Future work
 - Characterization of regions with low ultrasonic noise for comparison
 - Quantification of microstructures and data analysis
 - Thesis writing
- Summary

Industrial Relevance

- Ti-6Al-4V is widely used in many industries
- Properties of $(\alpha+\beta)$ Ti-alloys can vary greatly
 - Dependent on α morphology and orientation
 - Necessitates rigorous inspection
 - Commonly done via ultrasonic testing (UT)
- Prone to heterogeneous deformation and localized texture during thermomechanical processing (TMP)
 - Scatter ultrasonic signals used for inspection
 - Can cause parts to be rejected (\$\$\$\$)
 - Hard to predict where localized texture will form, and how severe it will be <u>even in simple forgings</u>!

Project Goal

- Investigate microstructure of simple forging (on right), determine origin of features that impeded ultrasonic inspection
 - 5 areas were tested, increased noise observed in three of them at indicated depths
- Extend understanding of microstructural features that contribute to uncertainty in UT of Ti-64 forgings
 - Electron microscopy and orientation mapping via electron backscatter diffraction (EBSD)

Background Information

- How are (α+β) Ti-forgings typically processed?
- How are forgings ultrasonically inspected?
- What complicates ultrasonic inspection of alpha/beta Ti-alloys?
- What are microstructural aspects that contribute to noise?

Background Information: (α+ß) Titanium Alloy Processing

- 1. ß-forging homogenizes as-cast microstructure
- α+ß forging introduces hot work that drives ß recrystallization
- β anneal generates finer ß grains, rapid cooling produces fine α colonies that are easily broken up
- 4. Final α+ß work to netshape creates equiaxed, fine grained α in a matrix of transformed ß

Step 0: Ingot Solidification

- ß-grains solidify, can be equiaxed or columnar
 - Can be ~cms in size
- α colonies grow from ß grain boundaries during cooling
 - Will be related to parent ß by Burgers orientation relationship:
 - $\begin{array}{l} \{110\}_{\text{B}} // (0001)_{\alpha} \\ \langle 111\rangle_{\text{B}} // [2\overline{1}\overline{1}0]_{\alpha} \end{array} \end{array}$
 - 12 possible variants, usually between 3 and 5 will form

Figure Credit: S.L. Semiatin, 2018

SEMI-ANNUAL MEETING – Spring 2019

Steps 1+2: ß and Initial (α+ß) Hot **Working of Ingot**

- Ingot is cogged, elongating longitudinal axis
- β-worked initially because β is softer than α
 - $-T > 1050^{\circ}C$
 - Produces ß grains ~mms in size
- (α+β) worked to introduce hot work used to fuel recrystallization during ß anneal
 - $-900^{\circ}C < T < 990^{\circ}C$
 - $-\alpha$ colonies will deform, albeit less than ß
 - Strain partitioning b/t phases is hard to predict
 - "Hard" vs. "Soft" oriented α colonies
 - Temperature- and rate-dependence of ß

DEFORM-3D simulation of cogging

http://wildeanalysis.co.uk/fea/ software/deform/deform-3dsuite/deform-cogging

Step 3: ß-Anneal and Quenching CANFSA

- ß grains recrystallize during brief hold above ß-transus
 - Grains grow rapidly until ~1-2mm
- Rapidly quenched in water
 - Suppresses grain-boundary α
 - Produces fine α colonies that are easily deformed and recrystallized

Cemperature

Step 4: (α+ß) Forging

- Produces equiaxed primary α grains in a matrix of transformed ß (secondary α platelets and remnant ß at boundaries)
 - Average grain size usually ~15-20um following heat treatment
- Ideal: Any primary α texture is insulated by randomly oriented secondary α -> homogeneity!

- ...ideally

S.L. Semiatin, 2018

β-Forge

Femperature

 α/β -Forge

β-Anneal

Time

 α/β -Forge

A. L. Pilchak, 2018

Center Proprietary – Terms of CANFSA Membership Agreement Apply

(0001)

Background Information

- How are (α+β) Ti-forgings typically processed?
 - ~4 step process with intent of producing uniform, fine grains
- How are forgings ultrasonically inspected?
- What complicates ultrasonic inspection of alpha/beta Ti-alloys?
- What are microstructural aspects that contribute to noise?

How are Forgings Ultrasonically CANFSA Inspected?

- "Pulse/Echo" Inspection
 - Immersed transducer supplies an ultrasonic pulse into the material
 - The echo is then recorded as a voltage signal
 - Reflections occur wherever there is a difference in density
 - Initially developed to detect cracks, pores, and voids, has been refined to determine more about microstructure

How are Forgings Ultrasonically CANFSA **Inspected?** (Cont.)

- Calibrated using a flat-bottom hole (FBH) standard
 - Machined flaw serves as a reflector in a known location to ensure accuracy of measurements
 - Permits calculation of a signal-to-noise ratio (SNR)

Background Information

- How are (α+β) Ti-forgings typically processed?
 - ~4 step process with intent of producing uniform, fine grains
- How are forgings ultrasonically inspected?
 - Pulse/echo inspection, calibrated via flat-bottom hole standards
- What complicates ultrasonic inspection of alpha/beta Ti-alloys?
- What are microstructural aspects that contribute to noise?

What Complicates Ultrasonic Inspection of Ti-Forgings?

- Complex ultrasound-microstructure interactions
- Difficult-to-interpret readings near surfaces
 - Dents and scratches serve as reflectors
- Reflections at grain boundaries
 - Difference in (c) and (a) plane density and elastic modulus
- Localized preferred crystallographic orientation

Background Information

- How are (α+β) Ti-forgings typically processed?
 - ~4 step process with intent of producing uniform, fine grains
- How are forgings ultrasonically inspected?
 - Pulse/echo inspection, calibrated via flat-bottom hole standards
- What complicates ultrasonic inspection of alpha/beta Ti-alloys?
 - Complex ultrasound-microstructure interactions
 - Surface defects, variations in grain noise, and localized texture
- What are microstructural aspects that contribute to noise?

What Aspects of Microstructure Contribute to Noise?

- Backscattering at grain boundaries due to acoustic mismatch
 - Grain morphology (particularly elongation)
 - Grain orientation (relative to incident beam)
- Wavelength of ultrasonic pulse relative to average grain size
 - If $\lambda > 2\pi D$, "Rayleigh" scattering occurs
 - Improves inspectability
 - If $\lambda < 2\pi D$, "Stochastic" scattering occurs
 - Increases attenuation (energy loss)
- With sufficient attenuation, dangerous defects can appear to be less dangerous

S.L. Semiatin, 2018

Background Information

- How are (α+β) Ti-forgings typically processed?
 - ~4 step process with intent of producing uniform, fine grains
- How are forgings ultrasonically inspected?
 - Pulse/echo inspection, calibrated via flat-bottom hole standards
- What complicates ultrasonic inspection of alpha/beta Ti-alloys?
 - Complex ultrasound-microstructure interactions
 - Surface defects, variations in grain noise, and localized texture
- What are microstructural aspects that contribute to noise?
 - Grain elongation and preferred orientation
 - Grains that are larger than expected (>15-20μm)

Recent Progress

- Removal of regions of interest via wire EDM
- Bulk texture measurement via x-ray diffraction
- Scanning electron microscopy of samples

SEMI-ANNUAL MEETING – Spring 2019 Center Proprietary – Terms of CANFSA Membership Agreement Apply

Removal of Regions of Interest

- 5 regions scanned by Weber Metals:
 - 1.30% SNR, 2.05" depth
 - 2.40% SNR, 2.28" depth
 - 3. 10% SNR through thickness (control)
 - 4.10% SNR through thickness (control)
 - 5.30% SNR, 2.38" depth
- Regions were extracted via wire EDM
- 1 and 2 were cut to indicated depths
 - Referred to as "Square 1" and "Square 2," respectively
- 5 was cut into "coins" parallel to the top surface at depths of 2.23", 2.38", and 2.53" for XRD and BSE analysis
 - Referred to as "Coin 1," "2," and "3,"

Τ1

- Regions were extracted via wire EDM
- 1 and 2 were cut to indicated depths
 - Referred to as "Square 1" and "Square 2," respectively
- 5 was cut into "coins" parallel to the top surface at depths of 2.23", 2.38", and 2.53" for XRD and BSE analysis
 - Referred to as "Coin 1," "2," and "3,"

Recent Progress

- Removal of regions of interest via wire EDM
 - Samples were ß-forged, ß-annealed, and $(\alpha+\beta)$ -forged
 - Were not (α +ß) annealed
- Bulk texture measurement via x-ray diffraction
- Scanning electron microscopy of samples

Texture Measurements via XRD CANES

- Coin 2 was mounted and polished for XRD analysis
 - Recall that coin 2 was cut @ depth of ultrasonic indication
- Full texture scan was conducted:
 - Scan for Bragg condition for (a), (c), and (a+c) planes (hkl- α)
 - Set condition, rotate samples through phi = 0° -359° and chi = 0° -80°
 - Higher intensity = more planes aligned with that orientation
 - Defocusing and background scans were also performed

"Coin 2" Bulk Texture XRD

- Pole figure results show evidence of weak texture
 - Max intensity of 1.2x random is weak, expected values of at least 2x
 - Scan area = ~1cm² not detecting "localized" texture

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Recent Progress

- Removal of regions of interest via wire EDM
 - Samples were ß-forged, ß-annealed, and $(\alpha+\beta)$ -forged
 - Were not (α +ß) annealed
- Bulk texture measurement via x-ray diffraction
 - Bulk texture was very weak (1.2x random for pyramidal planes)
- Scanning electron microscopy of samples

SEM of Coin 1 (above location with 30% SNR)

T1

- "Control" samples above/below indication
- Expected for non-heat treated microstructure
 - Nominally equiaxed α
 - Nothing too coarse
 - Small amount of elongated α

SEM of Coin 2 (30% SNR)

Τ1

- Large, bent α colony remnants observed
 - Evidence of poor recrystallization
 - Cannot observe crystallographic orientation via SEM
 - Proceeded to perform EBSD

Τ1

0001

1010

2110 29

0001

SEM of Square 2

SEM of Square 2 - Annotated

Axial

T1

Center Proprietary – Terms of CANFSA Membership Agreement Apply

0001

"Stitched" EBSD Maps

For a bigger picture view...

"I can't do it in TSL/OIM, but I can do it in PowerPoint!"

Connor Campbell

SEMI-ANNUAL MEETING - Spring 2019

Recent Progress

- Removal of regions of interest via wire EDM
 - Samples were ß-forged, ß-annealed, and $(\alpha+\beta)$ -forged
 - Were not (α +ß) annealed
- Bulk texture measurement via x-ray diffraction
 - Bulk texture was very weak (1.2x random for pyramidal planes)
- Scanning electron microscopy of samples
 - From regions with high ultrasonic signal, took images of:
 - α colony remnants
 - Elongated and coarse α
 - Preferred orientation

Summary of Recent Progress

- Weak bulk texture detected via XRD
- Stronger local texture detected via EBSD
- Microstructural heterogeneity observed via SEM-BEI
 - $-\alpha$ colony remnants
 - Elongated and coarse α (up to 100 μ m)
 - If UT wavelength was selected for a uniform, fine microstructure, plausible that these features would scatter incident acoustics
- Microstructure appears to have not recrystallized
 - Plausible, given location near surface
 - Thermal losses and friction at dies may have a role in decreasing strain at observed locations

Future Work

- Quantify SEM images by measuring:
 - Size of equiaxed α
 - Volume fraction of equiaxed $\boldsymbol{\alpha}$
 - Volume fraction of total $\boldsymbol{\alpha}$
 - Thickness of α laths
- Obtain EBSD maps of control regions for comparison and analysis
 - Regions of low noise and symmetrically equivalent sites
 - i.e. similar depth, but near the top surface
- Finish thesis

Gantt Chart

SEMI-ANNUAL MEETING - Spring 2019

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Center for Advanced Non-Ferrous Structural Alloys An Industry/University Cooperative Research Center

Thank you very much!

Connor R. Campbell concampb@mines.edu

Special thanks to B. Terry at Colorado School of Mines for his tireless FESEM work!

