

Center for Advanced **Non-Ferrous Structural Alloys** An Industry/University Cooperative Research Center

Project 32-L: Development of Cabinet-Based X-Ray Computed Tomography Methods for Studies of Microstructures and Defects in Metals

Spring 2019 Semi-Annual Meeting Iowa State University, Ames, IA April 3-5, 2019

Student: C. Gus Becker (Mines)

Faculty: Amy Clarke (Mines)

Industrial Mentors: Michelle Espy (LANL, AET-6: Non-Destructive Testing)

Project 32-L: Development of Cabinet-Based X-Ray Computed Tomography Methods for Studies of Microstructures and Defects in Metals

 Student: C. Gus Becker (Mines) Advisor(s): Amy Clarke (Mines) 	Project Duration PhD: August 2017 to May 2021
 <u>Problem:</u> Industrial processes of metals such as casting and additive manufacturing can benefit from static/dynamic radiography, but user facilities have technique and access limitations. <u>Objective:</u> Analyze existing radiography data and establish cabinet-based x-ray radiography capabilities at Mines for further experimentation. <u>Benefit:</u> Defect identification in AM metals and studies of solidification. 	 <u>Recent Progress</u> Improvement of ImageJ skills though scripting Creation of modular image processing method to process large datasets efficiently Image processing of existing radiography datasets Aid fellow CANFSA students with in-situ data Started learning Python language for tomographic reconstructions and image/data analysis

Metrics						
Description	% Complete	Status				
1. Development of modular image processing method using ImageJ scripts	90%	•				
2. Image processing and analysis of datasets from AET-6, APS, and pRad	70%	•				
3. Literature review	50%	•				
4. Establish x-ray cabinet and perform laboratory x-ray imaging experiments	50%	•				
5. Material investigation with XCT (AM lattice experiments, solidification, etc.)	0%	•				

Industrial Relevance

- Identify defects in additively manufactured (AM) parts by non-destructive imaging
 - Qualification and certification
 - Technique limitations
- Weld inspection
 - Safe and stable welds
 - Failure points, inclusions, porosity

http://solutionsinimaging.com/industrial-applications/weld-inspection/

Industrial Relevance

- In-situ x-ray imaging of dynamic materials processes (e.g. casting) to inform model development
- Establishment of x-ray radiography and computed tomography (CT) cabinet at Mines
 - Characterization of materials for thesis
 - Support current projects
 - Consideration of future projects from industry
 - Accommodates custom/flexible experimental platforms (solidification: casting, welding, AM, etc.; deformation: tension, compression, etc.)

Cabinet Timeline

Process Donation Internally (LANL)	Ship to White Rock, NM for Refurbishing	Procurement	Refurbish at White Rock, NM	Ship from White Rock, NM to Mines	Set up on Mines Campus
Complete	Complete	Complete	3 - 4 month duration	TBD	TBD

Cabinet Specs

- Sealed source
- Energies up to 150 keV
- 5 µm spot size
- 10 12 µm spatial resolution (Higher resolution: not as much penetrating power)
- 25 x 30 cm field-of-view
- 1 5 Hz temporal resolution

- Split image processing routine into separate "modules"
- Each module takes an image directory, performs an image processing step, and outputs the edited images
- Chain modules together by using output images from one as the input images for another
- Creates ordered file hierarchy with each module

- Process:
- File structure:
- △ Original directory
 - △ Original radiographs

- Process: Automatic resize
- File structure:
- △ Original directory
 - △ Original radiographs
 - △ Automatic resize process
 - △ Automatic resize radiographs
 - △ Automatic resize animation

- Process: Automatic resize \rightarrow Pseudocolor
- File structure:
- △ Original directory
 - △ Original radiographs
 - △ Automatic resize process
 - △ Automatic resize radiographs
 - △ Automatic resize animation
 - △ Pseudocolor process
 - △ Pseudocolor radiographs
 - △ Pseudocolor animation

Dynamic X-Ray Radiography

- Al-30wt.%Ag
- Controlled directional solidification
- APS setup
 - –15 mm steel bar
 - -7 x 12 mm window
- Through image processing:
 - Solidification velocity
 - Solute segregation

Automatic resize by thresholding

- Automatic resize by thresholding
- Trim edges

- Removes variable amount of pixels from each side of the image
- Allows for better contrast when normalized to all images

- Removes variable amount of pixels from each side of the image
- Allows for better contrast when normalized to all images

- Removes variable amount of pixels from each side of the image
- Allows for better contrast when normalized to all images

- Automatic resize by thresholding
- Trim edges
- Removal of band artifacts through fast Fourier transform filtering

SEMI-ANNUAL MEETING - Spring 2019

SEMI-ANNUAL MEETING – Spring 2019

Nyquist frequency

SEMI-ANNUAL MEETING - Spring 2019

SEMI-ANNUAL MEETING - Spring 2019

SEMI-ANNUAL MEETING – Spring 2019

- Automatic resize by thresholding
- Trim edges
- Removal of band artifacts through fast Fourier transform filtering
- Pseudocolor mapping of pixel intensities with lookup tables

Pseudocolor Mapping

- Maps a pixel intensity value from a grayscale spectrum to a spectrum consisting of colors
- Many options, can be created/edited

Pseudocolor Mapping

SEMI-ANNUAL MEETING - Spring 2019

Pseudocolor Mapping

Grayscale

Fire

SEMI-ANNUAL MEETING - Spring 2019

- Automatic resize by thresholding
- Trim edges
- Removal of band artifacts through fast Fourier transform filtering
- Pseudocolor mapping of pixel intensities with lookup tables
- Plotting pixel profile along a line

Future Work

- Modular Image Processing
 - Customize pseudocolor mapping to better emphasize microstructural features
 Normalize intensities between frames
- Develop reconstruction abilities for computed tomography
- Train on cabinet-based x-ray radiography at LANL
- Develop experiments for cabinet-based x-ray radiography at Mines (AM lattices)

- 3 spatial dimensions + time (Clarke et al., in collaboration with LANL)
- Collaborate with Voorhees' group at Northwestern

250 µm

Gibbs et al., Sci. Rep., 2015.

• 4D x-ray tomography of Al-24wt.%Cu

SEMI-ANNUAL MEETING - Spring 2019

Center for Advanced Non-Ferrous Structural Alloys An Industry/University Cooperative Research Center

Thank you!

C. Gus Becker chbecker@mines.edu

Center Proprietary – Terms of CANFSA Membership Agreement Apply

59

Project 32-L – Development of Cabinet-Based X-Ray Computed Tomography Methods for Studies of Microstructures and Defects in Metals

Student: C. Gus Becker

Faculty: Amy Clarke Industrial Partners: LANL (Michelle Espy) Project Duration: Aug. 2017 – May 2021

Program Goal

 Industrial processes of metals such as casting and additive manufacturing can benefit from radiography studies performed in the laboratory

Approach

 Analyze current radiography data and establish cabinet-based x-ray radiography capabilities at Mines for further experimentation

Benefits

 Defect identification in AM metals and studies of solidification microstructure to inform casting models

High-energy micro-focus x-ray cabinet for use in laboratory setting. Mines cabinet will achieve energies up to 150 keV.

Micro-focus x-ray radiography of Al-Ag controlled directional solidification.

Segregation of Agrich solute from Alrich dendrites is seen as dark region towards the bottom of the large channel.