

Center for Advanced **Non-Ferrous Structural Alloys** An Industry/University Cooperative Research Center

Project 38-L: On-Demand Casting of Net-Shape Titanium Components for Improved Weapon System Reliability

Spring 2019 Semi-Annual Meeting Iowa State University, Ames IA April 3-5, 2019

Students: Undergraduate students TBD (Mines) Faculty: Steve Midson (Mines) Industrial Mentor: Paul Brancaleon (NADCA)

Project 38-L: On-Demand Casting of Net-Shape Titanium Components for Improved Weapon System Reliability

- Undergraduate student: TBD
- Advisor: S. Midson (Mines)
- <u>Problem</u>: The supply chain for low-cost, lightweight net-shape titanium components needs to be expanded.
- <u>Objective</u>: Extend the die casting process for the casting of titanium alloys. Identify a permanent die + coating system for titanium die casting.
- <u>Benefit</u>: Die casting is a low-cost approach for producing components, and so the extension of die casting to Ti-alloys could have a significant impact on the titanium marketplace.

Project Details

UG August 2018 to July 2023 Funded by DLA

Recent Progress

- Reviewed published information on die materials for high melting temperature alloys
- Identified a study where refractory metals were successfully used as die materials for steel die casting
- Looking at three approaches to fabricate a die that will meet project targets

Metrics			
Description	% Complete	Status	
1. Identification of titanium alloy with improved castability (if necessary)	5%	•	
2. Identification of candidate high temperature resistant die casting die materials & coatings for titanium die casting	15%	•	
3. Casting trials to evaluate die materials	0%	•	
4. Provide a coated tool for the demonstration of on-demand melting	0%	•	

SEMI-ANNUAL MEETING - Spring 2019

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Industrial Relevance

Needs

 The supply chain for net-shape titanium components can be expanded by the development of high volume die casting methods

Benefits

- Expanded supply chain for net-shape titanium components
- Production of lower cost titanium components
- Replace heavier components with lightweight titanium castings

SEMI-ANNUAL MEETING - Spring 2019

Project Outline

- Three Universities
 - CSM, Purdue, University of Alabama at Birmingham
- Technology:

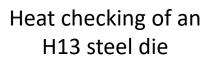
4

- Develop an on-demand die casting system for titanium alloys
- -Develop advanced die materials for casting titanium
- Ensure castability through modifications of titanium alloy composition
- -Optimize metal quality

Project Tasks - CSM

1. Die casting dies

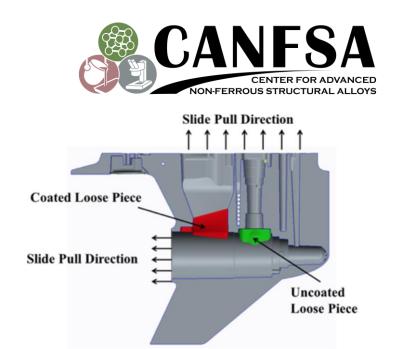
5


- Identify high temperature resistant die materials and coatings for titanium die casting
- Test die concepts in the laboratory
- Provide a coated tool for the demonstration of on-demand die casting of titanium

Potential Tooling Issues

- Heat checking
 - Cracking of die surface due to cyclical thermal fatigue
- Gross cracking
 - From high levels of thermal and mechanical stresses
- Oxidation of die
 - Due to high melting temperature of the titanium
- Reaction between liquid titanium and mold material

Tooling Concepts



- Examining three approaches
 - 1. Metallic tool with graphite liners
 - 2. Metallic tool with ceramic coatings
 - 3. Refractory metal tools


Graphite Liners

- Would a relatively soft graphite liner survive aggressive die casting process?
 - High injection speeds
 - 25 m/sec
 - High injection pressures
 - 6,000 psi
- Fabricate an insert from graphite
 - For an aluminum die casting die
- Perform a test at Mercury Castings

Grade of Graphite	Compressive Strength (ksi)	Tensile Strength (ksi)
IPG24	24	7

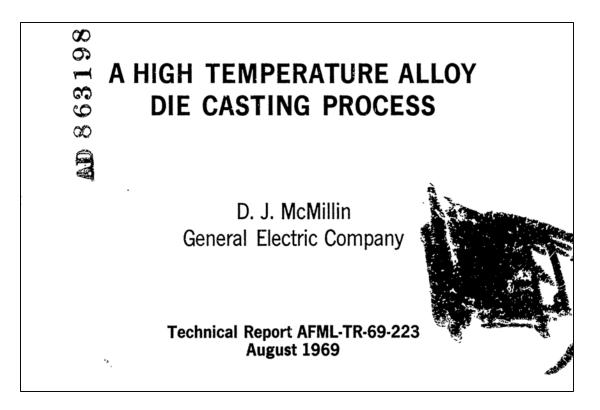
- Gearcase die casting at Mercury Castings
- Colored die inserts are ejected with casting

- Insert shown in red
- Insert is about 4-inches in size

Metallic Tool with Ceramic Coating

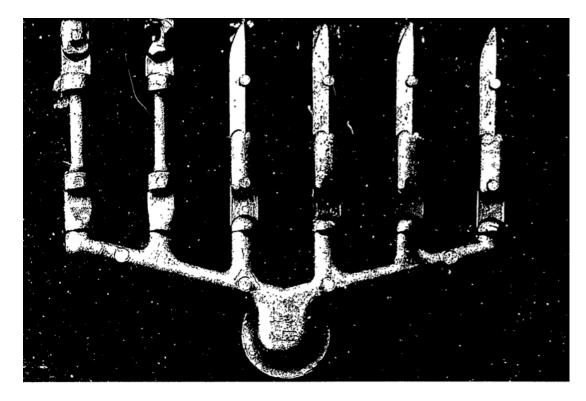
- Metallic tool would support loads from die casting process
 - Ceramic coating would protect the metallic tool from the high temperatures associated with titanium die casting
- Utilize similar ceramics as thermal barrier coatings
 - Partially or fully stabilized zirconia
 - Yttria
 - Coating would need to be fully dense
- Current deposition process of EB-PVD would provide poor adhesion to the metallic substrate
- Alternative deposition processes
 - Sputtering
 - Pulsed laser deposition
 - Thermal spray + post-deposition grinding

Metallic Tool with Ceramic Coating



- What are the potential failure modes?
 - Spalling of coating
 - Thermal shock of coating
- Test by fabricating simple coated tool for evaluation in CSM foundry
- Pour liquid metals into the mold
 - Liquid aluminum
 - Liquid copper
 - Liquid steels
- Evaluate integrity of ceramic coatings after testing

Refractory Metal Dies


• GE examined ferrous die casting in the 1960s

- Produced an extensive 450 page report in 1969
 - 80 pages involves a die material study

GE's Die Life Study

- Used a 6-cavity die
- Examined 23 different die materials
 - Molybdenum based
 - Tungsten based

.. .

	Number		
	of Cycles		
Material	Experienced	Condition	Mode of Deterioration
Cu-infiltrated W	2	Failed	Brittle failure (mechanical not in cavity)
H-13	728	Failed	Plastic deformation (cavity)
Cu-infiltrated Mo (2% Be-Cu)*	2,745	Failed	Heat checking/erosion
Anviloy 1150	2,585	Failed	Heat checking/erosion
СЬ-752	4,017	Failed	Gross cracking
GE-474*	7,017	Failed	Erosion/heat checking
P&S W-2% ThO ₂ +	3,470	Poor	Random brittle failure/erosion
Anviloy 1150	8,992	Failed	Heat checking/erosion
P&S W+	6,055	Fair/Poor	Random brittle failure/erosion
80-20*	8,992	Failed	Random brittle failure/ heat checking
Wrought Mo	8,990	Failed	Brittle failure (delamination)
Cb-25% Zr+	8,285	Fair	Heat checking
Hi-density, P&S Mo (insert retainer plates)	8,992	Failed	Gross cracking/plastic deformation
Wrought Mo (insert retainer plates)+	6,055	Good/Fair	Gross cracking/brittle failure (delamination)
Silicided wrought Mo+	6,055	Very good	Plastic deformation (gap forma- tion) brittle failure (delami- nation)
Wrought Mo+	15,047	Fair/Poor	Brittle failure (delamination)
Hi-density, P&S Mo+	8,285	Very good	Plastic deformation
Hi-density, P&S Mo	15,047	Fair/Poor	Plastic deformation (gaps and dents)/gross cracking
HOT SHOT 2920X*+	14,792	Fair	Heat checking
HOT SHOT 2920X*+ (solution annealed)	14,319	Good	Heat checking
Hi-density, P&S Mo+	15,047	Good	Plastic deformation (dents)
TZM+	15,047	Good	Brittle failure (delamination)
Mo-3*+	15,047	Good	Pitting/heat checking

23 different die materials

SEMI-ANNUAL MEETING - Spring 2019

.. .

	Number		
Material	of Cycles Experienced	Condition	Mode of Deterioration
Cu-infiltrated W	2	Failed	Brittle failure (mechanical not in cavity)
H-13	728	Failed	Plastic deformation (cavity)
Cu-infiltrated Mo (2% Be-Cu)*	2,745	Failed	Heat checking/erosion
Anviloy 1150	2,585	Failed	Heat checking/erosion
СЬ-752	4,017	Failed	Gross cracking
GE-474*	7,017	Failed	Erosion/heat checking
P&S W-2% ThO ₂ +	3,470	Poor	Random brittle failure/erosion
Anviloy 1150	8,992	Failed	Heat checking/erosion
P&S W+	6,055	Fair/Poor	Random brittle failure/erosion
80-20*	8,992	Failed	Random brittle failure/ heat checking
Wrought Mo	8,990	Failed	Brittle failure (delamination)
Cb-25% Zr+	8,285	Fair	Heat checking
Hi-density, P&S Mo (insert retainer plates)	8,992	Failed	Gross cracking/plastic deformation
Wrought Mo (insert retainer plates)+	6,055	Good/Fair	Gross cracking/brittle failure (delamination)
Silicided wrought Mo+	6,055	Very good	Plastic deformation (gap forma tion) brittle failure (delam nation)
Wrought Mo+	15,047	Fair/Poor	Brittle failure (delamination)
Hi-density, P&S Mo+	8,285	Very good	Plastic deformation
Hi-density, P&S Mo	15,047	Fair/Poor	Plastic deformation (gaps and dents)/gross cracking
HOT SHOT 2920X*+	14,792	Fair	Heat checking
HOT SHOT 2920X*+ (solution annealed)	14,319	Good	Heat checking
Hi-density, P&S	15,047	Good	Plastic deformation (dents)
Mo+			
Mo+ TZM+	15,047	Good	Brittle failure (delamination)

23 different die materials

	Number		
59999 (000000000000000000000000000000000	of Cycles		
Material	Experienced	Condition	Mode of Deterioration
Cu-infiltrated W	2	Failed	Brittle failure (mechanical not in cavity)
H-13	728	Failed	Plastic deformation (cavity)
Cu-infiltrated Mo (2% Be-Cu)*	2,745	Failed	Heat checking/erosion
Anviloy 1150	2,585	Failed	Heat checking/erosion
СЬ-752	4,017	Failed	Gross cracking
GE-474*	7,017	Failed	Erosion/heat checking
P&S W-2% ThO2+	3,470	Poor	Random brittle failure/erosion
Anviloy 1150	8,992	Failed	Heat checking/erosion
P&S W+	6,055	Fair/Poor	Random brittle failure/erosion
80-20*	8,992	Failed	Random brittle failure/ heat checking
Wrought Mo	8,990	Failed	Brittle failure (delamination)
Cb-25% Zr+	8,285	Fair	Heat checking
Hi-density, P&S No (insert retainer plates)	8,992	Failed	Gross cracking/plastic deformation
Wrought Mo (insert retainer plates)+	6,055	Good/Fair	Gross cracking/brittle failure (delamination)
Silicided wrought Mo+	6,055	Very good	Plastic deformation (gap forma- tion) brittle failure (delami- nation)
Wrought Mo+	15,047	Fair/Poor	Brittle failure (delamination)
Hi-density, P&S Mo+	8,285	Very good	Plastic deformation
Hi-density, P&S Mo	15,047	Fair/Poor	Plastic deformation (gaps and dents)/gross cracking
HOT SHOT 2920X*+	14,792	Fair	Heat checking
HOT SHOT 2920X*+ (solution annealed)	14,319	Good	Heat checking
Hi-density, P&S Mo+	15,047	Good	Plastic deformation (dents)
TZM+	15,047	Good	Brittle failure (delamination)
Mo-3*+	15,047	Good	Pitting/heat checking

23 different die materials

SEMI-ANNUAL MEETING - Spring 2019

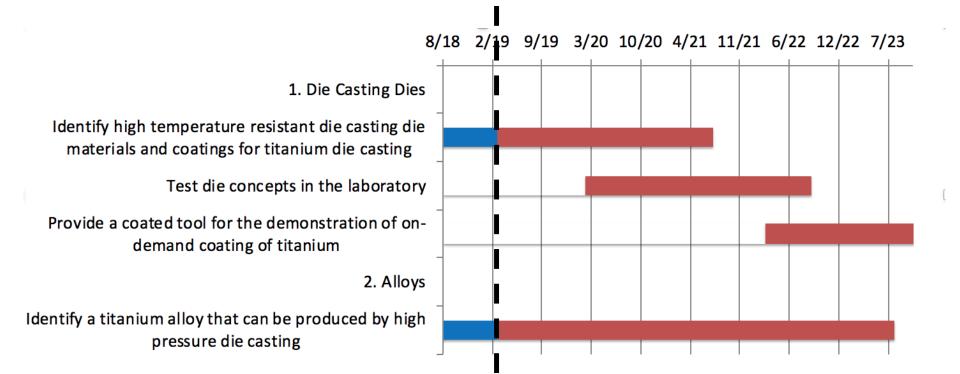
	Number		
	of Cycles		
Material	Experienced	Condition	Mode of Deterioration
Cu-infiltrated W	2	Failed	Brittle failure (mechanical not in cavity)
H-13	728	Failed	Plastic deformation (cavity)
Cu-infiltrated No (2% Be-Cu)*	2,745	Failed	Heat checking/erosion
Anviloy 1150	2,585	Failed	Heat checking/erosion
Cb-752	4,017	Failed	Gross cracking
GE-474*	7,017	Failed	Erosion/heat checking
P&S W-2% ThO ₂ +	3,470	Poor	Random brittle failure/erosion
Anviloy 1150	8,992	Failed	Heat checking/erosion
P&S W+	6,055	Fair/Poor	Random brittle failure/erosion
80-20*	8,992	Failed	Random brittle failure/ heat checking
Wrought Mo	8,990	Failed	Brittle failure (delamination)
Cb-25% Zr+	8,285	Fair	Heat checking
Hi-density, P&S No (insert retainer plates)	8,992	Failed	Gross cracking/plastic deformation
Wrought Mo (insert retainer plates)+	6,055	Good/Fair	Gross cracking/brittle failure (delamination)
Silicided wrought Mo+	6,055	Very good	Plastic deformation (gap forma- tion) brittle failure (delami- nation)
Wrought Mo+	15,047	Fair/Poor	Brittle failure (delamination)
Hi-density, P&S Mo+	8,285	Very good	Plastic deformation
Hi-density, P&S Mo	15,047	Fair/Poor	Plastic deformation (gaps and dents)/gross cracking
HOT SHOT 2920X*+	14,792	Fair	Heat checking
HOT SHOT 2920X*+ (solution annealed)	14,319	Good	Heat checking
Hi-density, P&S Mo+	15,047	Good	Plastic deformation (dents)
TZM+	15,047	Good	Brittle failure (delamination)
Mo-3*+	15,047	Good	Pitting/heat checking

23 different die materials

SEMI-ANNUAL MEETING - Spring 2019

Material	Number of Cycles Experienced	Condition	Mode of Deterioration
Wrought Mo+	15,047	Fair/Poor	Brittle failure (delamination)
Hi-density, P&S Mo+	8,285	Very good	Plastic deformation
Hi-density, P&S Mo	15,047	Fair/Poor	Plastic deformation (gaps and dents)/gross cracking
HOT SHOT 2920X*+	14,792	Fair	Heat checking
HOT SHOT 2920X*+ (solution annealed)	14,319	Good	Heat checking
Hi-density, P&S Mo+	15,047	Good	Plastic deformation (dents)
TZM+	15,047	Good	Brittle failure (delamination)
Mo-3*+	15,047	Good	Pitting/heat checking

Source: GE Ferrous Die Casting Report, 1969


Future Work - Die Materials for Titanium Die Casting

- Continue to evaluate three approaches
 - Graphite liners
 - Coated metallic tools
 - Refractory metals
- Refractory metal dies
 - Use modeling to evaluate optimum configuration of die and cooling
 - Does conformal cooling extend or reduce die life
 - Cast steel alloys for testing of die materials in foundry at the Colorado School of Mines

Gantt Chart

Center for Advanced Non-Ferrous Structural Alloys An Industry/University Cooperative Research Center

Acknowledgement

This research is sponsored by the DLA – Troop Support, Philadelphia, PA and the Defense Logistics Agency Information Operations, J62LB, Research & Development, Ft. Belvoir, VA

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Center for Advanced Non-Ferrous Structural Alloys An Industry/University Cooperative Research Center

Thank you!

Steve Midson <u>smidson@mines.edu</u>

Center Proprietary – Terms of CANFSA Membership Agreement Apply