•	y - Project Synopsis	Date: March 2019
Center/Site: CANFSA/Colorado School of Mines		
Tracking No .: 33a-L: In-situ Studies of Strain Rate Effects on Phase Transformations and Microstructural Evolution in β - Titanium Alloys	Phone : (720) 272-9125	E-mail : bellyson@mymail.mines.edu
Center/Site Director: CANFSA/M. Kaufman/P. Collins/A. Clarke		Type: (Continuing)
Project Leader: Benjamin Ellyson		Proposed Budget: \$240,000, Leveraged
in metastable β -titanium alloys as a formulate an alloy design methodold TWIP) effects are the main focus of	function of deformation path ogy. Specifically, transformation this project, as they allow for crength. These alloys present	on and twinning induced plasticity (TRIP a high work-hardening and uniform potential blast and crash resistance, due
occur before, after and during deform	static and dynamic deformati mation with state-of-the-art cts on intrinsic and extrinsic	on. Characterization of the samples will techniques to understand the factors. This understanding will be used to
	tent in the literature. Limited	sile deformation behavior of metastable β studies have started to explore the role n tension.
methods to develop new alloys. This	project is the first to propos	ups have only utilized existing design e a full-cycle study with the aim of applications, such as blast resistance.
of metastable β -Titanium alloys in coplanned. High-rate in-situ and post-	ompression and tension as a mortem tests (split-Hopkinso e strain-rate dependencies of ned microstructures is also p	TRIP/TWIP deformation mechanisms.
Deliverables for the current pro work hardening rate of Ti-1023 and mechanisms (TRIP/TWIP/slip) and ir microstructure will be explored for the	Ti-15Mo will be explored. A r nteractions between different	phases as a function of initial
	a major concern for defense	ciety : Lightweight, blast resistant armor applications, while increased formability ex, plastically formed parts.
characterization (optical, advanced e		lechanical testing and microstructural
deformation at national user facilitie material processing and fabrication.		nodeling of materials, alloy design and

Progress to Date: Quasi-static compressive and tensile studies of Ti-1023 are complete and effect of grain size on yield stress and work hardening are being analyzed. Transmission electron microscopy of interrupted strain tensile tests are underway to understand to microstructural evolution in the early stages of plastic deformation of Ti-1023. High-rate testing in compression and tension were completed using a Kolsky bar setup at the Advanced Photon Source (APS) in Argonne, II. These tests were completed on Ti-1023, Ti-15Mo and medium entropy alloys Ti-35Zr-10Nb and equimolar TiZrNb. Data analysis of these tests are underway.

Estimated Start Date: Fall 2017 Estimated Knowledge Transfer Date: Spring 2021

The Executive Summary is used by corporate stakeholders in evaluating the value of their leveraged investment in the center and its projects. It also enables stakeholders to discuss and decide on the projects that provide value to their respective organizations. Ideally, the tool is completed and shared in advance of IAB meetings to help enable rational decision making.