Center/Site: CANFSA		
Tracking No .: 17: Characterization of Microstructure Evolution in Nickel-Titanium- Hafnium Intermetallics	Phone: (614)313-3371	E-mail: seanmills@mines.edu
Center/Site Director: CANFSA/M. Kaufman/P. Collins/A. Clarke		Type: Continuing
Project Leader: Sean Mills		Proposed Budget: \$240,000
metallurgy and bearing element per	formance in Ni-Ti-Hf alloys. ansformation kinetics, which	effect of hafnium ternary alloying on the The overall benefits of hafnium alloying can reduce the residual stress and still alloys.
stress and hardness measurement	and a time/temperature/tran	contact fatigue characterization, residual sformation study of NiTiHf alloys. Alloy at.% and hafnium contents by 1.0 – 8.0
Related work elsewhere: The Na shape memory actuation and super		s involved in NiTiHf alloy development for
How this project is different: Hi compressive/torsional toughness of optimized for tooling and wear-limit	the material. The alloying ar	
is being performed by transmission compositions. Microstructure analys conditions under wear track specim	electron microscopy (TEM). is on deformed samples com	
	is of interest. Continued rolli	of relevant phase transformation, ng contact fatigue experimentation on
$Ni_{56}Ti_{36}Hf_8$ and $Ni_{50.8}Ti_{46.2}Hf_3$ alloys i Deliverables for the current pro development for tribology is being p dynamic loading. A letter on the for	is of interest. Continued rollin is being performed. pposed year : An Acta Materio prepared, in addition to a par mation and structure analysi	ng contact fatigue experimentation on alia paper on NiTiHf alloy microstructure per on NiTiHf alloys deformed via static vs. s of cubic Ni ₃ Ti ₂ phase is in preparation. A
Ni ₅₆ Ti ₃₆ Hf ₈ and Ni _{50.8} Ti _{46.2} Hf ₃ alloys i Deliverables for the current pro development for tribology is being p dynamic loading. A letter on the for paper on deformation of ultra-hard How the project may be transfo bearings in the International Space	is of interest. Continued rollin s being performed. posed year : An Acta Materio prepared, in addition to a pap mation and structure analysi NiTiHf alloys under rolling co prmative and/or benefit so Station. Space-age application	ng contact fatigue experimentation on alia paper on NiTiHf alloy microstructure ber on NiTiHf alloys deformed via static vs. s of cubic Ni ₃ Ti ₂ phase is in preparation. A ntact fatigue is also in preparation.
Ni ₅₆ Ti ₃₆ Hf ₈ and Ni _{50.8} Ti _{46.2} Hf ₃ alloys i Deliverables for the current pro development for tribology is being p dynamic loading. A letter on the for paper on deformation of ultra-hard How the project may be transfo bearings in the International Space other industries, driving performance Research areas of expertise ne	is of interest. Continued rollin is being performed. pposed year : An Acta Materio prepared, in addition to a pap mation and structure analysi NiTiHf alloys under rolling co prmative and/or benefit so Station. Space-age application ce in extreme environments. eded for project success: I	ng contact fatigue experimentation on alia paper on NiTiHf alloy microstructure per on NiTiHf alloys deformed via static vs. s of cubic Ni ₃ Ti ₂ phase is in preparation. A ntact fatigue is also in preparation.
Ni ₅₆ Ti ₃₆ Hf ₈ and Ni _{50.8} Ti _{46.2} Hf ₃ alloys i Deliverables for the current pro development for tribology is being p dynamic loading. A letter on the for paper on deformation of ultra-hard How the project may be transfo bearings in the International Space other industries, driving performance Research areas of expertise new strengthening mechanisms, failure Potential Member Company Ber	is of interest. Continued rollin is being performed. posed year : An Acta Materio prepared, in addition to a pap mation and structure analysi NiTiHf alloys under rolling co prmative and/or benefit so Station. Space-age application ce in extreme environments. eded for project success: If analysis. mefits: Greater understanding	ng contact fatigue experimentation on alia paper on NiTiHf alloy microstructure ber on NiTiHf alloys deformed via static vs. s of cubic Ni ₃ Ti ₂ phase is in preparation. A ntact fatigue is also in preparation. Deciety : Alloys will be optimized for rotary ons can have a long-term impact on many Fatigue and fracture, phase transformation g of NiTiHf alloys, phase transformations,
Ni ₅₆ Ti ₃₆ Hf ₈ and Ni _{50.8} Ti _{46.2} Hf ₃ alloys i Deliverables for the current pro development for tribology is being p dynamic loading. A letter on the for paper on deformation of ultra-hard How the project may be transfor bearings in the International Space other industries, driving performance Research areas of expertise new strengthening mechanisms, failure Motential Member Company Ber microstructural evolution, and poter	is of interest. Continued rolling being performed. posed year : An Acta Materi prepared, in addition to a paper mation and structure analysi NiTiHf alloys under rolling co prmative and/or benefit so Station. Space-age applications the in extreme environments. eded for project success: If analysis. hefits: Greater understandim- ntial applications of this alloy	ng contact fatigue experimentation on alia paper on NiTiHf alloy microstructure ber on NiTiHf alloys deformed via static vs. s of cubic Ni ₃ Ti ₂ phase is in preparation. A ntact fatigue is also in preparation. Deciety : Alloys will be optimized for rotary ons can have a long-term impact on many Fatigue and fracture, phase transformation g of NiTiHf alloys, phase transformations,

and its projects. It also enables stakeholders to discuss and decide on the projects that provide value to their respective organizations. Ideally, the tool is completed and shared in advance of IAB meetings to help enable rational decision making.