

Center for Advanced **Non-Ferrous Structural Alloys** An Industry/University Cooperative Research Center

Project # 35:On the Influence of Microstructural Features of Linear Friction Welding and Electron **Beam Additive Manufacturing Ti-6AI-4V on Tensile and Fatigue Mechanical Properties**

Spring 2019 Semi-Annual Meeting Iowa State University, Ames, IA April 3-5, 2019

Student: Michael Mendoza (ISU) Faculty: Peter Collins ISU Industrial Mentors: Honeywell

Project 35: On the Influence of Microstructural Features of Linear Friction Welding and Electron Beam Additive Manufacturing Ti-6AI-4V on Tensile and Fatigue Mechanical Properties

 Student: Michael Mendoza (ISU) Advisor(s): Peter Collins (ISU) 	Project Duration PhD: January 2017 to July 2019
 <u>Problem:</u> Linear Friction Welding (LFW) offers cost reduction for aircraft structural components production. However, the information about its microstructure and mechanical properties is still limited. <u>Objective:</u> Characterize local microstructures (LFW) and their relationship with mechanical properties <u>Benefit:</u> The understanding of microstructure-properties relationship of LFW will improve manufacturing efficiency of aircraft components. 	 Recent Progress Larger EBSD characterization of The Welded Zone (WZ), WZ in-plane, Thermomechanical Affected Zone (TMAZ) and Parent Material (PM) Additional tensile tests and stress/strain curves on dogbone samples for the individual zones of LFW Preliminary ultrasonic fatigue test on Branson device for purchase and modifications PED-TEM data for dislocation density calculations

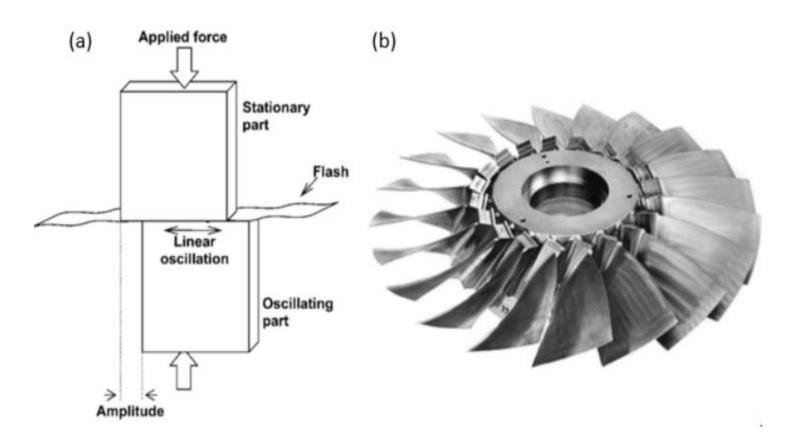
Metrics			
Description	% Complete	Status	
1. Literature review	95%	•	
2. Microstructure and tensile properties of dogbone samples within the individual three LFW zones	100%	•	
3. Conventional fatigue analysis (four-point bending test) of local microstructures EBAM-Ti-6AI-4V	80%	•	
4. Simulation and design (Comsol) of ultrasonic fatigue on local microstructures of EBAM-Ti-6AI-4V		•	
5. Ultrasonic fatigue test design and modifications	20%	•	

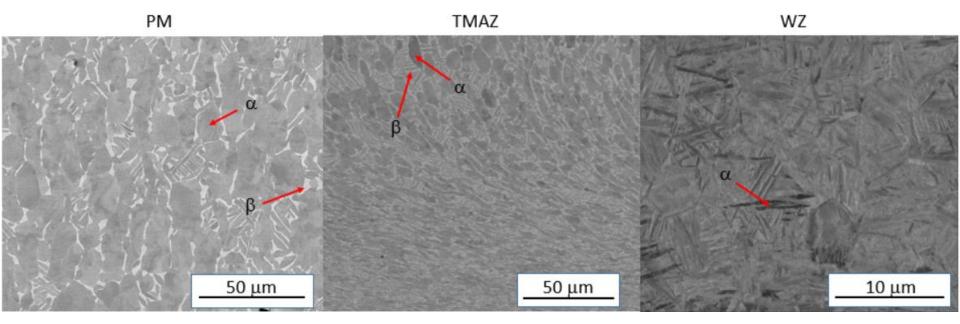
SEMI-ANNUAL MEETING - 4/3/2019

Industrial Relevance

- The study of Ti-6AI-4V under different manufacturing processes is attracting more interest from industry because of cost reduction and potential improvements in mechanical properties.
- The main advantage of LFW resides in the fact that for aircraft structural components oversized ingots are machined to get the final component, so a large amount of material is wasted. LFW allows the use of not oversized ingots for welding them together to form the component with less use of initial material.

Linear Friction Welding (LFW)Ti-6AI-4V




Figure 1.(a) Diagram of Linear Friction Welding process, (b) Integrated blisk (disc and blades)

Bhamji, I., Preuss, M., Threadgill, P. L., & Addison, A. C. (2011). Solid state joining of metals by linear friction welding: a literature review. *Materials science and technology*, 27(1), 2-12.

SEMI-ANNUAL MEETING - 4/3/2019

Linear Friction Welding (LFW) Zones

Backscatter electron micrographs on each zone

- PM parent material with a bi-modal microstructure (i.e. primary α_p grains surrounded by α lamellar microstructure of α laths in a β matrix).
- TMAZ -Thermomechanical affected zone with a distorted bi-modal microstructure.
- WZ Welded zone with a refined martensitic α ' (needle like) laths in a β matrix.

Linear Friction Welding (LFW) Zones

IPF Z Color

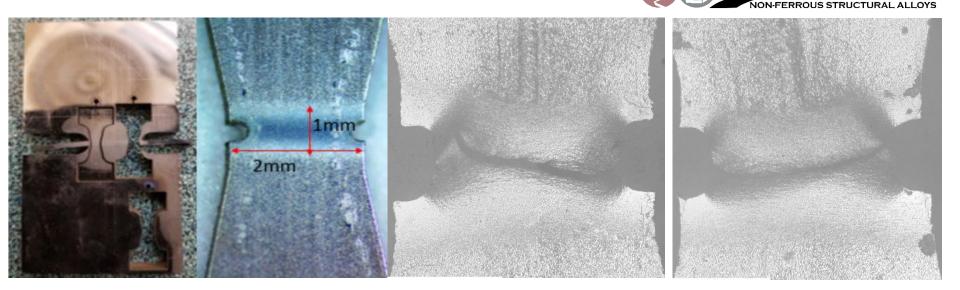
1210

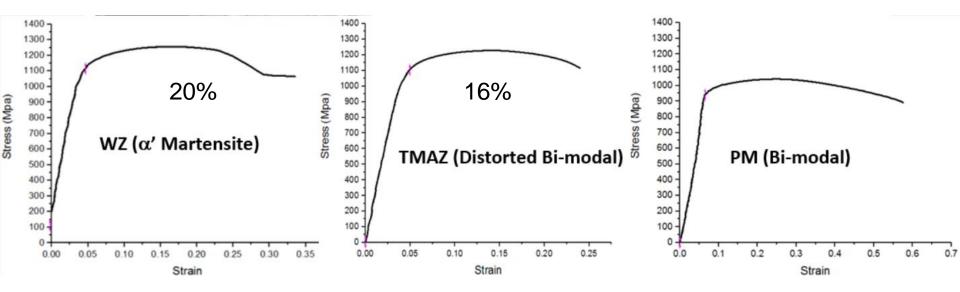
0110

0001

PM TMAZ WZ

<u>10 μm</u>


Backscatter electron micrograph

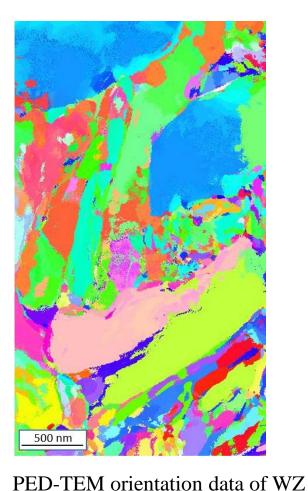

SEMI-ANNUAL MEETING – 4/3/2019

Center Proprietary – Terms of CANFSA Membership Agreement Apply

100µm

Current Progress on Tensile Properties of LFW-Ti-6AI-4V

SEMI-ANNUAL MEETING - 4/3/2019


Center Proprietary – Terms of CANFSA Membership Agreement Apply

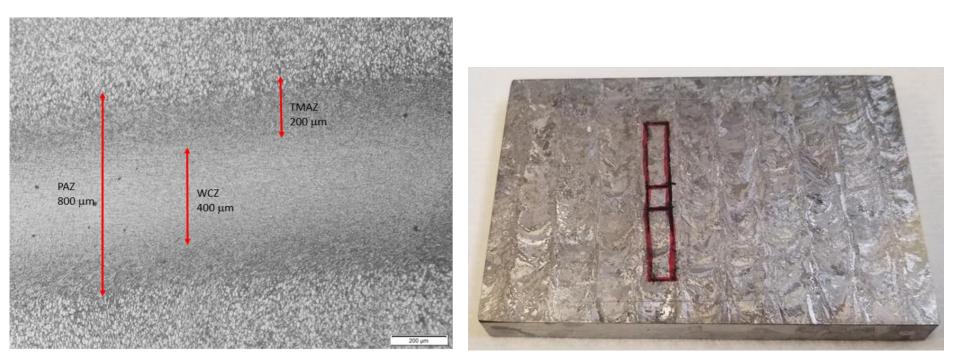
CANFSA

CENTER FOR ADVANCED

Dislocation Density Analysis

PED-TEM orientation data of TMAZ for dislocation density analysis

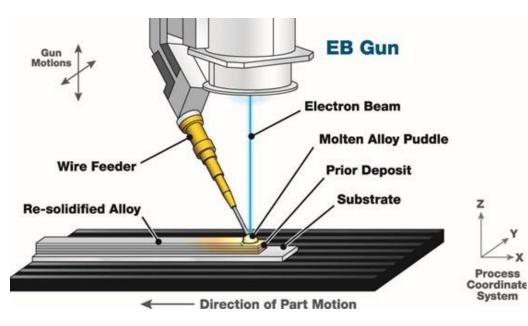
Orientation information is the input file for the MATLAB code for dislocation density calculation


SEMI-ANNUAL MEETING – 4/3/2019

for dislocation density analysis

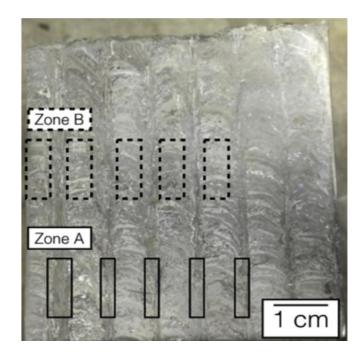
Fatigue Approach

Tensile properties are important, but fatigue analysis is also necessary due to the presence of cyclic stresses on Ti-6AI-4V aircraft components.



EBAM-Ti-6Al-4V

SEMI-ANNUAL MEETING - 4/3/2019


Electron Beam Additive Manufacturing (EBAM)

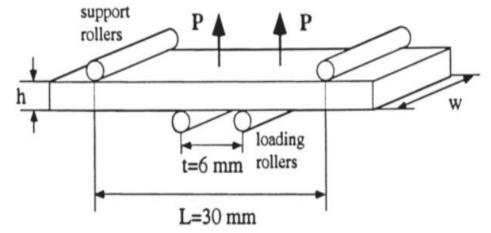
http://www.sciaky.com/additive-manufacturing/wire-am-vs-powder-am

- Electron beam as a heat source
- Ti-6AI-4V wire as a feedstock
- Vacuum chamber that also protects the alloy

• Two distinct zones can be recognized on this picture, zone A comprises vertically elongated prior β grains with very little variation in α lath thickness and zone B with a pronounce variation in α lath thickness and a more scattered orientation.

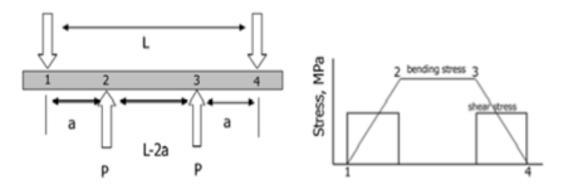
Hayes, B. J., et al. (2017). "Predicting tensile properties of Ti-6Al-4V produced via directed energy deposition." Acta Materialia 133: 120-133.

SEMI-ANNUAL MEETING - 4/3/2019


Conventional Fatigue Analysis on EBAM-Ti-6AI-4V

Four-point bending test is selected as a convenient method for fatigue studies due to several reasons:

- It produces a uniform maximum stress on the surface.
- Easy sample mounting and dismounting as no special gripping is required.
- It is also suitable to evaluate specific microstructures from small samples.


20 specimens total (Length: 40 mm, width: 5 mm, Thickness: 4.5 mm) 10 for zone **A** and 10 for zone **B** were sectioned via EDM with the suitable dimensions for capturing the interested microstructure and construct the respective *S-N* curve and fracture analysis.

T. Zhai, Y. Xu, J. Martin, A. Wilkinson, G. Briggs, A self-aligning four-point bend testing rig and sample geometry effect in four-point bend fatigue, International Journal of Fatigue 21(9) (1999) 889-894.

Four-Point Bending Test

Optimum testing geometry for uniform stress distribution consistent with the value calculated by the beam theory.

t = load span L = support span h = thickness

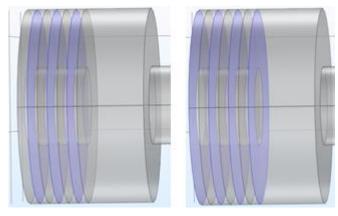
> t/h = (5.74 mm)/(4.5 mm) = 1.27L/t = (23 mm)/(5.74 mm) = 4.0

Pilchak, A. L. (2009). The effect of friction stir processing on the microstructure, mechanical properties and fracture behavior of investment cast Ti-6AI-4V, The Ohio State University.

T. Zhai, Y. Xu, J. Martin, A. Wilkinson, G. Briggs, A self-aligning four-point bend testing rig and sample geometry effect in four-point bend fatigue, International Journal of Fatigue 21(9) (1999) 889-894.

SEMI-ANNUAL MEETING - 4/3/2019

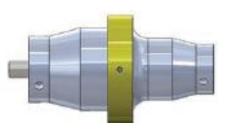
Comsol Model of Ultrasonic Fatigue on EBAM-Ti-6AI-4V

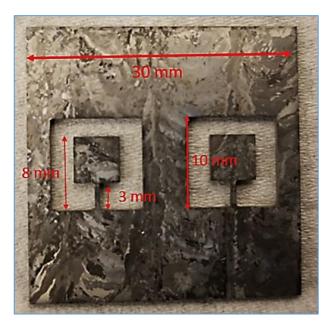


Catenoidal ONE-HALF WAVELENGTH* HORN CONVERTER BOOSTER **Piezoceramics** 5.57 Thickness = 0.2 in INCHES 7.16 182 141 5±0.5 127±12.7 MM 0 < Ó 3.50 00 401 CU 0.8 in RECOMMENDED CLAMPING AREA **OVERALL HORN LENGTH** CAN VARY BEYOND THESE BOOSTER FRONT END TYPICAL DIMENSIONS DIA. WILL VARY WITH DEPENDING ON THE APPLIC TION AMPLITUDE UNING A **DIMENSIONS VARY WITH 7 50 5 mm 0 Ø 500 µm 100 Horn (Catenoidal 3/8") 50 -200 Booster Converter 0 -100 133 mm mm 139.1 mm 101.5 mm 0 -50 mm

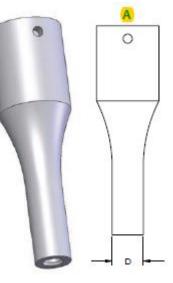
20kHz Converter/Booster/Horn, Typical Dimensions

Branson Ultrasonics Corporation.

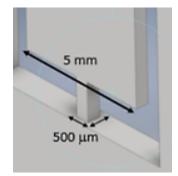

Resonance system


Electric potential (V) Ground

6 piezoceramic discs, stacked mechanically in series and electrically in parallel.

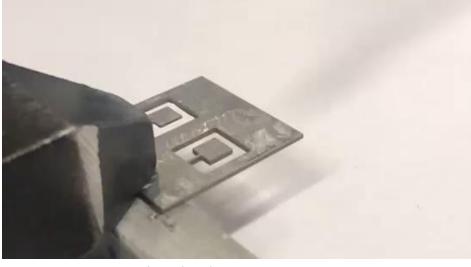


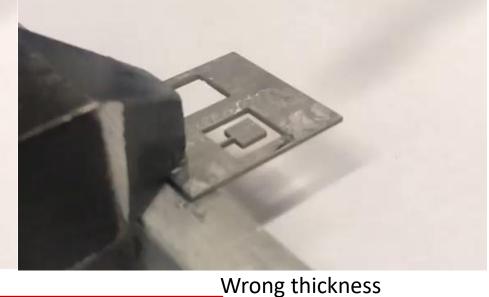
Gold 1:1.5 101-149-057 Booster for 20kHz



Catenoidal Horn


608-001-021




Sample dimensions

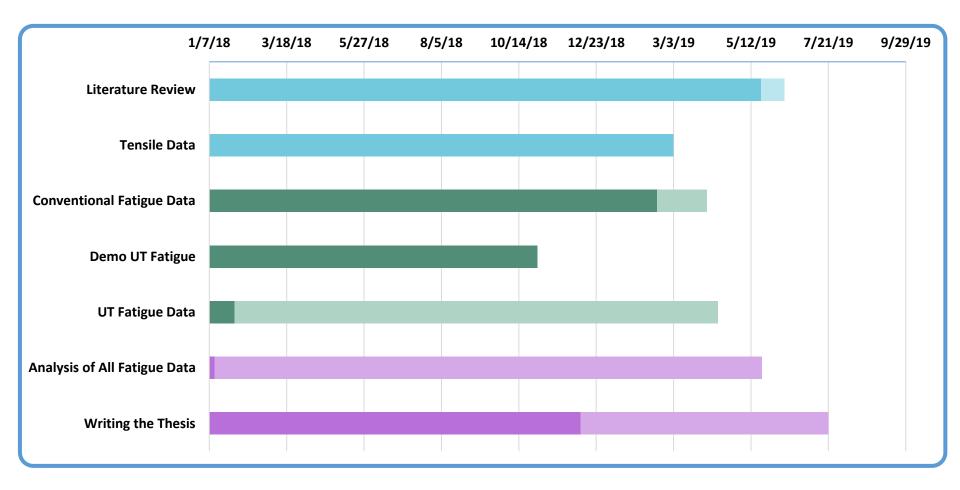
SEMI-ANNUAL MEETING - 4/3/2019

Ultrasonic Fatigue Prediction and Test on CANFSA EBAM-Ti-6AI-4V

Right thickness SEMI-ANNUAL MEETING – 4/3/2019

Center Proprietary – Terms of CANFSA Membership Agreement Apply

CENTER FOR ADVANCED


Summary of Pending Work

- TEM-PED data and MATLAB code for dislocation density calculations
- S-N curve construction and analysis from conventional fatigue test
- Branson Ultrasonic equipment modifications
- S-N curve construction and analysis from ultrasonic fatigue test
- Analysis and comparison of the fatigue tests

Progress Gantt Chart

SEMI-ANNUAL MEETING - 4/3/2019

Center for Advanced **Non-Ferrous Structural Alloys** An Industry/University Cooperative Research Center

The authors acknowledge the support of the Center for Advanced Non-Ferrous Structural Alloys (CANFSA), an NSF Industry/University Cooperative Research Center (I/UCRC) between Iowa State University and The Colorado School of Mines.

The authors also acknowledge the support of the Defense Advanced Research Projects Agency (DARPA)

Thank you very much!

Michael Mendoza

@iastate.edu

Center for Advanced **Non-Ferrous Structural Alloys** An Industry/University Cooperative Research Center

Project 35 - On the Influence of Microstructural Features of Linear Friction Welding and Electron Beam Additive Manufacturing Ti-6AI-4V on Tensile and Fatigue Mechanical Properties

Student: Michael Mendoza

Faculty: Peter Collins

Industrial Partners: Honeywell

Project Duration: January. 2017 – July 2019

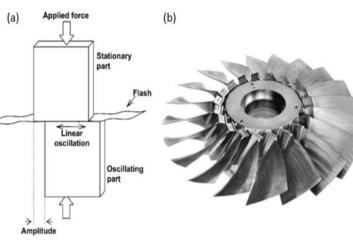
Achievement

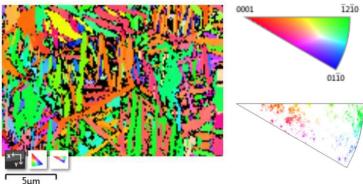
Characterize local microstructures of Linear Friction Welding (LFW) and their relationship with mechanical properties.

Significance and Impact

New welding methods as LFW offers cost reduction for aircraft structural components production. Understanding the microstructure-properties relationship in the process is a key factor to its implementation.

Research Details


Microstructure characterization of individual LFW-Ti-6AI-4V zones to evaluate tensile properties and exploration of fatigue analysis on larger local microstructures as EBAM-Ti-6AI-4V for future applicability on LEW.



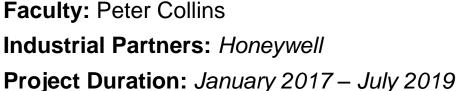
SEMI-ANNUAL MEETING - 4/3/2019

Center Proprietary – Terms of CANFSA Membership Agreement App

Significance and Impact

Student: Michael Mendoza

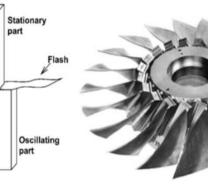
New welding methods as LFW offers cost reduction for aircraft structural components production. Understanding the microstructure-properties relationship in the process is a key factor to its implementation.

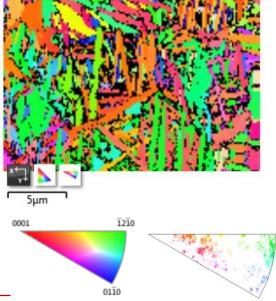

Research Details

Achievement

properties

Microstructure characterization of individual LFW-Ti-6AI-4V zones to evaluate tensile properties and exploration of fatigue analysis on larger local microstructures as EBAM-Ti-6AI-4V for future applicability on LFW.


Project 35 - Characterization of Microstructures and Mechanical Properties in LFW Ti-6AI-44 CANFSA


Linear Characterize local microstructures of Linear Friction oscillation Welding (LFW) and their relationship with mechanic nart

(a)

Applied force

(b)

Project 35 - Characterization of Microstructures and Mechanical Properties in LFW Ti-6AI-4V

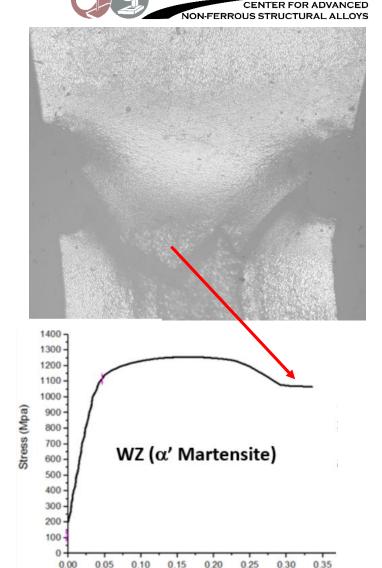
Student: Michael Mendoza

Faculty: Peter Collins

Industrial Partners: Honeywell

Project Duration: January. 2017 – July 2019

Program Goal


 Characterize the microstructure and mechanical properties of Linear Friction Welding (LFW)

Approach

• Evaluate tensile properties on LFW-Ti-6AI-4V and explore fatigue analysis on larger microstructures as EBAM-Ti-6AI-4V for future applicability on LFW.

Benefits

 The understanding of microstructure-properties relationship of LFW will improve manufacturing efficiency of aircraft components.

Strain

CANESA