

Center for Advanced Non-Ferrous Structural Alloys An Industry/University Cooperative Research Center

Project 36-L: Rationalization of Liquid/Solid and Solid/Solid Interphase Instabilities During Thermal – Mechanical Transients of Metal Additive Manufacturing

Fall 2018 Semi-Annual Meeting Colorado School of Mines, Golden, CO October 2-4, 2018

IOWA STATE

UNIVERS

Student: Alec Saville (Mines) Faculty: Dr. Amy Clarke (Mines) Industrial Mentor: TBD Other Participant: Dr. Sudarsanan

Other Participant: Dr. Sudarsanam Suresh Babu (ORNL/UT), Dr. Pete Collins (Iowa State University)

Center Proprietary – Terms of CANFSA Membership Agreement Apply

1

Project 36-L: Rationalization of Liquid/Solid and Solid/Solid Interphase Instabilities During Thermal – Mechanical Transients of Metal Additive Manufacturing

Student: Alec Saville (Mines)Advisor(s): Amy Clarke (Mines)	Project Duration PhD: 2018-2022
 Problem: Instabilities during solidification lead to detrimental material properties during additive manufacturing solidification. A greater understanding of how to prevent this is required. <u>Objective:</u> Rationalize interfacial instabilities during additive manufacturing of Ti-6-4/Inconel 718, and their implications for final material conditions. <u>Benefit:</u> Improve performance of metallic additively manufactured parts and lay foundation for future optimization work. 	 <u>Recent Progress</u> Gathered preliminary neutron diffraction data from Los Alamos National Laboratory Rietveld refinement ongoing Beginning laser surface analysis Surface roughness measurements with Keyence 5000

Metrics		
Description	% Complete	Status
1. Literature Review	10%	•
2. Collect neutron diffraction data for texture analysis.	25%	•
3. Complete first round of Rietveld refinement.	15%	•
4. Surface roughness and relief analysis	10%	•
5. Characterize microstructure of different rastering modes.	0%	•

Fall 2018 CANFSA Meeting - 10/2/2018

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Industrial Relevance

- Additive manufacturing (AM) is becoming ubiquitous
 - Freedom in engineering design
 - Aerospace
 - Rapid-repair and prototyping
- Qualification and certification of produced parts is lacking
- Requires fundamental understanding of solidification and microstructural evolution during AM
- Lead to increased part performance via microstructural and defect control
 - Higher throughput
 - Reduce waste
 - Limit defect formation

https://synergyresources.net/additive-manufacturing-next-industrialrevolution/

Project Focus

- Fundamental look into interfacial instabilities during AM
 - Solid-liquid, solid-solid
- Large thermal gradients and sudden reversals
 - $-10^{7}\frac{K}{m}$
 - Greater than 10 Hz frequency
- Phase transformations
 - α to α' in Ti-6Al-4V
- Microstructural development
- Defect formation

A.J. Clarke et al., Acta Materialia, 2017, 129:203-216

Multidiscipinary University Research Inititiative (MURI)

- Sudarsanam Suresh Babu, University of Tennessee & ORNL
- Amy Clarke, Colorado School of Mines
- Pete Collins, Iowa State University
- Joerg Jinschek, The Ohio State University
- Tresa Pollock, University of California Santa Barbara
- James Kong, Virginia Tech
- Simon Ringer, University of Sydney and collaborators at UNSW Sydney

Spatial and temporal transients during AM temperature gradients (Ti-6AI-4V) and temperature contours (Inconel 718)

Spatial-temporal thermomechanical boundary conditions may trigger complex interface stabilities and defect generations...

Colorado School of Mines – Multi-Scale, Insitu/Ex-situ Characterization of Solid-Liquid/Solid-Solid Phase Transitions

CANFSA Center for ADVANCED NON-FERROUS STRUCTURAL ALLOYS

In-situ imaging/diffraction at national user facilities

Dynamic Transmission Electron Microscopy (DTEM) of phase transition dynamics

Fall 2018 CANFSA Meeting – 10/2/2018

Center Proprietary – Terms of CANFSA Membership Agreement Apply

CSM Early Characterization of AM Builds

CANFSA Center for ADVANCED NON-FERROUS STRUCTURAL ALLOYS

- Ti-6Al-4V samples received
 - Probing for defects and evidence of instabilities
 - Manufactured via electron beam melting
- Surface roughness
 - Keyence 5000
 - High resolution laser analysis
- Bulk and slit neutron diffraction
 - LANL
- X-ray radiography and tomography
 - Ex-situ at CSM (in-situ to follow)
- Follow-up with Inconel 718

https://www.keyence.com/landing/microscope/lp_v hx5000_measurement_capabilities.jsp

Electron Beam Melting (EBM)

- Powder bed melting method
- Electron beam heat source
- Large powder size
- More capable ability to control microstructure
 - Equiaxed vs. columnar
- Completed at Oak Ridge National Laboratory -Manufacturing Demonstration Facility

R.R. Dehoff et al., Site specific control of crystallographic grain orientation through electron beam additive manufacturing, Materials Science and Technology, 2015, 31:8, 931-938

Fall 2018 CANFSA Meeting – 10/2/2018

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Sample Production

- Varying rastering modes
 - Alter local thermal history
- 15 mm x 15 mm x 25 mm

Dehoff build pattern

Random build pattern

Fall 2018 CANFSA Meeting – 10/2/2018

Finished Product

Random

QYERFENIET'S XFF31 YF7587753797977

Printing process S. Kumar, et al. 2018

Dehoff

Basketweave Raster

Keyence 5000

- Light optical microscope
- Flexible lens holder
 - Angled/free form analysis
- Variable-Z capability
 - Surface depth
 - Surface roughness

- Computerized profile analyzer
 2D and 3D
- Higher resolution imaging than standard LOM
 - 5-10 micron resolution

https://www.keyence.com/landing/microscope/lp_v hx5000_measurement_capabilities.jsp

Optical Laser Analysis

https://mines.edu/physics

- Femtosecond laser system
- High resolution surface analysis
 - 500 nm
- Collaborate with data from Keyence 5000
- Observe solidification phenomenon *ex-situ*
 - Phase transformations
 - Surface relief

Neutron Diffraction

- Uses neutrons to penetrate larger volumes of material
 - Centimeter millimeter
 - High energy, low distance neutrons
- Scattering events produce crystallography data
 - Texture evolution
 - Crystal structure
- Bulk and slit experiments
 - Full specimen texture
 - Localized texture profile

HIPPO line at LANSCE-LANL

Current Work

- Continue initial microstructural characterization
- Surface analysis of Ti-6-4 with laser and optical imaging
- Ongoing Rietveld refinement and ODF processing of preliminary bulk neutron texture measurements

Preliminary Pole Figures of α -titanium

Fall 2018 CANFSA Meeting - 10/2/2018 Center Proprietary - Terms of CANFSA Membership Agreement Apply

Future Work

- In-situ characterization of Ti-6Al-4V and Inconel 718
 - Neutron diffraction during heating of Ti-6Al-4V
 - Synchrotron X-ray imaging and diffraction (AM Simulator at Sector 32-ID at the Advanced Photon Source at Argonne National Laboratory)
 - Dynamic transmission electron microscopy (DTEM)
 - Surrogate alloys?
 - X-ray cabinet at CSM?
- Neutron diffraction data analysis
- Complementary *ex-situ* characterization (e.g. laser and optical imaging, x-ray diffraction, micro-computed
 J.D. Ro tomography, electron microscopy)

APS AM Simulator

Fall 2018 CANFSA Meeting - 10/2/2018

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Progress

Thank you for listening! Any quick questions?

Alec Saville

asaville@mymail.mines.edu

 Fall 2018 CANFSA Meeting – 10/2/2018
 Center Proprietary – Terms of CANFSA Membership Agreement Apply

Center for Advanced Non-Ferrous Structural Alloys An Industry/University Cooperative Research Center

IOWA STATE

UNIVERSIT

Project 36-L: Rationalization of Liquid/Solid and Solid/Solid Interphase Instabilities During Thermal – **Mechanical Transients of Metal Additive Manufacturing**

Student: Alec Saville

Faculty: Amy Clarke

Other Partcipants: ORNL/UT (S.S. Babu), ISU (P. Collins)

Project Duration: August 2018 – May 2022

Achievement

Fundamental rationalization of instabilities during additive manufacturing of metallic systems and their effects on material performance in Ti-6-4 and Inconel 718

Significance and Impact

Additively manufactured metals exhibit great variability in e performance due to non-steady state solidification. A greater understanding of this phenomena will improve performance and assist in developing future process refinements.

Research Details

Performing laser and light optical surface analysis, processing texturing data from neutron diffraction experiments.

http://aviationweek.com/blog/meet-boeings-latest-next-gen-fighter-concept

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Project 36-L: Rationalization of Liquid/Solid and Solid/Solid Interphase Instabilities During Thermal – Mechanical Transients of Metal Additive Manufacturing

Student: Alec Saville

Faculty: Amy Clarke

Other Participants: ORNL (Sudarsanam Suresh Babu), ISU (Peter Collins)

Project Duration: August 2018 – May 2022

Achievement

 Fundamental rationalization of instabilities during additive manufacturing of metallic systems and their effects on material performance in Ti-6-4 and Inconel 718

Significance and Impact

 Additively manufactured metals exhibit great variability in performance due to non-steady state solidification. A greater understanding of this phenomena will improve performance and assist in developing future process refinements.

Research Details

 Performing laser and light optical surface analysis, processing texturing data from neutron diffraction experiments.

Fall 2018 CANFSA Meeting – 10/2/2018

http://aviationweek.com/blog/meet-boeings-latest-next-gen-fighter-concept

Project 36-L - Rationalization of Liquid/Solid and Solid/Solid Interphase Instabilities During Thermal – Mechanical Transients of Metal Additive Manufacturing

Student: Alec Saville

Faculty: Amy Clarke

Other Participants: ORNL (Sudarsanam Suresh Babu), ISU (Pete Collins)

Project Duration: August 2018 – May 2022

Program Goal

 Rationalize how instabilities in additive manufacturing of Ti-6-4 and Inconel 718 impact resultant microstructure and material performance

Approach

 Use *in-situ* AM beam line experiments, neutron diffraction, laser and light optical surface analysis, and X-ray tomography to rationalize interfacial evolution during AM processing

Benefits

 Improved qualification evaluations of metallic AM for production and increased scientific understanding of material evolution during AM

700X view of a Ti-6-4 sample surface

