

Center for Advanced Non-Ferrous Structural Alloys An Industry/University Cooperative Research Center

Project 17: Nickel-Titanium-Hafnium Alloy Design in Tribological Systems

Fall 2018 Semi-Annual Meeting Colorado School of Mines, Golden, CO October 2-4, 2018

Student: Sean Mills (Mines) Faculty: Aaron Stebner (Mines) Industrial Mentor(s): Christopher Dellacorte (NASA), Ronald Noebe (NASA) Other Participants : Behnam Aminahmadi (Mines)

1

Project 17: *Nickel-Titanium-Hafnium Alloy Design in Tribological Systems*

Student: Sean Mills (Mines)Advisor(s): Aaron Stebner (Mines)	Project Duration PhD: August 2015 to August 2019
 <u>Problem</u>: Ni-Ti alloys experience high residual stress due to rapid quenching processes. The result is cracking and machining distortion. Not quenching leads to low hardness. <u>Objective</u>: Elucidate the effect of Hf ternary alloying on metallurgy and bearing element performances. <u>Benefit</u>: Hf-alloying could lead to reduction in residual stress by eliminating the need for rapid cooling while retaining high strength and hardness levels of quenched binary Ni-Ti. 	 <u>Recent Progress</u> Rolling contact fatigue (RCF) tests on Ni₅₆Ti₄₁Hf₃ and Ni₅₆Ti₃₆Hf₈ alloy specimens TEM characterization of microstructure evolution in Ni₅₆Ti₃₆Hf₈ WAXS-based Time/Temperature/Transformation (TTT) research

Metrics								
Description % Cor								
1. Residual stress and hardness testing on $Ni_{55}Ti_{45}$ & $Ni_{54}Ti_{45}Hf_1$ (NASA)	80%	•						
2. Literature review	85%	•						
3. Rolling contact fatigue characterization of Ni ₅₄ Ti ₄₅ Hf ₁ alloy	80%	•						
4. Time/Temperature/Transformation of $Ni_{54}Ti_{45}Hf_1$ alloy	40%	•						
5. Alloy optimization – vary nickel and hafnium contents by 1-8 at%	40%	•						

Industrial relevance

CANFSA Center for ADVANCED NON-FERROUS STRUCTURAL ALLOYS

Nitinol shape-memory alloy with added hafnium resists both wear and corrosion

January 09, 2016 Source: ASM International

Puris LLC, Bruceton Mills, W. Va., recently signed a limited (partially) exclusive, term license agreement with NASA Glenn Research Center to produce a high-performance, hafniumenhanced shape-memory powder metallurgy alloy that provides resistance to both wear and corrosion.

Marketed under the brand name SM-103, the 60NiTi(Hf) alloy demonstrates a lower residual stress than other 60 nitinol alloys, resulting in improved response to heat treatment and easier processing. It delivers resistance to both wear and corrosion, traditionally considered to be mutually exclusive, in addition to favorable load-bearing properties. These attributes make it well suited to industrial bearings and precision bearing applications.

<www.asminternational.org/web/smst/news/industry/results/-/journal_content/56/10180/26098479/NEWS>

C. DellaCorte, M. K. Stanford, R. A. Manco, and F. Thomas, "Design Considerations for Resilient Rolling Element Bearings Made From Low Modulus Superelastic Materials," in ASME/STLE 2011 International Joint Tribology Conference, 2011, pp. 223– 224.

Application: Water recycling system on International Space Station

Co-Cr alloy bearings are damaged during rocket take-off

Nickel-rich Ni-Ti alloy shows superior damage resistance

Ni-Ti has better corrosion resistance than steel

High Performance Steel (Low Corrosion Resistance)

National Aeronautics and Space Administration John H. Glenn Research Center at Lewis Field

Fall 2018 CANFSA Meeting – 10/2/2018 Cent

Binary Ni-Ti bearing races are susceptible to untimely failures

Adding Hf atoms in Ni-Ti:

- Lowers solvus temperature (1020°C to 900°C)
- Slows diffusion, optimum precipitation via air-cool
 - High hardness (58 62 HRC) is retained

Residual stresses due to large undercooling can lead to fracture post-machining

National Aeronautics and Space Administration John H. Glenn Research Center at Lewis Field

Fall 2018 CANFSA Meeting – 10/2/2018

Ni-Ti-Hf application space

Mabe, Calkins, et al. 2005 Casalena et al. Adv. Eng. Matls. 2017

National Aeronautics and Space Administration John H. Glenn Research Center at Lewis Field

Target design space of Ni-Ti-Hf

Rolling contact fatigue testing of Ni-Ti-Hf rods

Test rig

Spring loaded test head

Ball bearing retainer

Three ball-on-rod RCF test configuration

RCF Tests: Composition and heat treatment → better performance

RCF Tests: Composition and heat treatment → better performance

Fall 2018 CANFSA Meeting - 10/2/2018

RCF Tests: Composition and heat treatment → better performance

Target design space of Ni-Ti-Hf


```
Ni<sub>4</sub>Ti<sub>3</sub>
```

Center for

μm

CANFSA

ADVANCED NON-FERROUS STRUCTURAL ALLOYS

H-phase

B. Amin-Ahmadi et al. Scripta Mat. (2017)

Hardness evolution not consistent CANFSA between compositions

→ microstructure characterization necessary

Fall 2018 CANFSA Meeting - 10/2/2018

- Blocky microstructure
 No H-phase
- \rightarrow High strain contrast between Ni₄Ti₃ and B2

 Ni_4Ti_3 Size: 63 \pm 16 nm Ni_4Ti_3 Spacing: 42 \pm 13 nm

Fall 2018 CANFSA Meeting – 10/2/2018

Ni₅₆Ti₄₁Hf₃ → SHT_{WQ} + 550(4hrs)_{AC} Lowest hardness

➔ Blocky microstructure

 \rightarrow No H-phase, coalesced Ni₄Ti₃

 \rightarrow Low strain contrast between Ni₄Ti₃ and B2

 $\rm Ni_4Ti_3$ Size: 113 \pm 32 nm, 87 \pm 19 nm $\rm Ni_4Ti_3$ Spacing: 92 \pm 24 nm

Ni₅₆Ti₄₁Hf₃ → SHT_{WQ} + 300(12hrs)_{AC} Highest hardness

Blocky microstructure
 No H-phase

 \rightarrow High strain contrast between Ni₄Ti₃ and B2

 Ni_4Ti_3 Size: 65 ± 21 nm Ni_4Ti_3 Spacing: 51 ± 19 nm

Fall 2018 CANFSA Meeting – 10/2/2018

$Ni_{56}Ti_{41}Hf_3 \rightarrow SHT_{WQ} + 300(12hrs)_{AC}$ **Highest hardness**

 \rightarrow High strain contrast between Ni₄Ti₃ and B2

 Ni_4Ti_3 Spacing: 51 ± 19 nm

Fall 2018 CANFSA Meeting - 10/2/2018

- → No visible secondary precipitation from low-magnification
- → Rare nano-sized H-phase (<5nm) in B2 matrix
- → Indication of elemental clustering prior to H-phase nucleation

Fall 2018 CANFSA Meeting – 10/2/2018

Ni₅₆Ti₃₆Hf₈ → SHT_{wQ} + 550(4hrs)_{AC} Lowest hardness

No blocky microstructure
 Dense nano H-phase in B2 matrix
 No Ni₄Ti₃ or Ni₃Ti₂ precipitates in matrix
 Large heterogeneous islands (0.3-0.5 μm)

H-phase Size: 21 ± 6 nm, 8 ± 2 nm H-phase Spacing: 17 ± 6 nm

Fall 2018 CANFSA Meeting – 10/2/2018 Center Proprietary

Ni₅₆Ti₃₆Hf₈ → SHT_{WQ} + 300(12hrs)_{AC} + 550(4hrs)_{AC} CANFSA Highest hardness

- ➔ No blocky microstructure
- \rightarrow Dense nano-Ni₃Ti₂ and nano-H-phase in B2 matrix

H-phase Size: 23 ± 5 nm, 12 ± 3 nm H-phase Spacing: 7 ± 2 nm

→ Large heterogeneous islands (0.4-0.6 µm)

Fall 2018 CANFSA Meeting – 10/2/2018 C

Ni₅₆Ti₃₆Hf₈ → SHT_{WQ} + 300(12hrs)_{AC} + 550(4hrs)_{AC} CANFSA Highest hardness

- ➔ No blocky microstructure
- \rightarrow Dense nano-Ni₃Ti₂ and nano-H-phase in B2 matrix

H-phase Size: 23 ± 5 nm, 12 ± 3 nm H-phase Spacing: 7 ± 2nm

→ Large heterogeneous islands (0.4-0.6 µm)

Conclusions for Ni-Ti-Hf

- → Blocky Ni_4Ti_3 is dominant strengthening phase in $Ni_{56}Ti_{41}Hf_3$.
- → Nano-scale H-phase is dominant strengthening phase in Ni₅₆Ti₃₆Hf₈. Very different mechanism that produces similar hardness values to Ni₅₆Ti₄₁Hf₃.
- ➔ Increasing Hf content hinders Ni₄Ti₃ formation and allows for tailored heat treatment schedule.
- Multiple routes can be taken to obtain optimum hardness levels. Microstructure is completely different, but similar properties are obtained.
- ➔ Tribology and compression testing on varied 56at.% Ni compositions show failure at 2.0 2.1 GPa.

Gantt chart

				2018									2019
me		Begin da	End da	February March	l April	 May	l June	l July	August	September C	october	November Decemb	per January
0	Residual stress and hardness testing on NiTi & NiTiHf1	8/3/15	8/1/16	▲ 2/12/18									
	 XRD analysis of residual microstresses 	8/3/15	1/1/16										
	Heat treatments & hardness testing for NiTiHf1	12/1/15	8/1/16										
0	Rolling contact fatigue characterization of NiTiHf1	11/2/15	2/1/18										
	 Failure analysis (XRD, OM, TEM, SEM) 	6/1/16	2/1/18										
	 RCF testing 	11/2/15	11/2/										
0	Time/Temperature/Transformation of NiTiHf1	2/1/17	6/1/18										
	 Ex-situ elucidation of T-T-T space (coarse resolution) 	2/1/17	5/1/18	ē									
	• In-situ TEM & XRD studies of transformation kinetics & therm	4/3/17	6/1/18										
0	Alloy optimization - vary nickel and hafnium contents by 1-8 at%	1/1/16	9/30/	<u>5</u>									
	 In-situ studies of transformation kinetics & thermodynamics 	6/1/18	8/1/19										
	 Screen hardness, strengths, and residual stresses of alloy ma 	.1/1/16	12/1/										
	 Ex-situ T-T-T mapping of most promising/interesting alloys 	6/1/16	8/1/17										
	 RCF testing of most promising/interesting alloys 	11/1/17	9/30/										
	 Failure analysis 	6/1/17	8/1/18										
										Dro	nont		

Present

Thank you very much!

Acknowledgements: Behnam Aminahmadi (Mines) Robert Williams (CEMAS) Othmane Benafan (NASA GRC) Christopher Dellacorte (NASA GRC) Ronald Noebe (NASA GRC)

Sean Mills Colorado School of Mines <u>seanmills@mines.edu</u> Stebnerlab.mines.edu

Center for Electron Microscopy and Analysis

Fall 2018 CANFSA Meeting - 10/2/2018

Center for Advanced **Non-Ferrous Structural Alloys** An Industry/University Cooperative Research Center

UNIVERSIT

Project 17 – Nickel-Titanium-Hafnium alloy design for tribological systems

Student: Sean Mills Faculty: Aaron Stebner Industrial Partners: NASA GRC (Ron Noebe, Chris Dellacorte)

Project Duration: Aug. 2015 – Aug. 2019

Achievement

Novel Ni-rich alloys provide ultra-hard optimized microstructures designed for space-age tribology applications.

Significance and Impact

Hf-alloying could lead to reduction in residual stress by eliminating the need for rapid cooling while retaining high strength and hardness levels of guenched binary Ni-Ti.

Research Details

Rolling contact fatigue testing and microstructure characterization of Ni-rich NiTiHf alloys.

Center Proprietary – Terms of CANFSA Membership Agreement Apply

28

Quantitative data from TEM study

CANFSA Center for

ADVANCED NON-FERROUS STRUCTURAL ALLOYS

Composition / HT	Ni ₄ Ti ₃ Length (nm)	Ni₄Ti₃ Width (nm)	Ni₄Ti₃ distance (nm)	H-Phase Length (nm)	H-Phase Width (nm)	H-Phase distance (nm)	Hardness (HV)	
Ni ₅₆ Ti ₄₁ Hf ₃ / WQ	63 ± 16	63 ± 16	42 ± 13	**	**	**	707 ± 9	
Ni ₅₆ Ti ₄₁ Hf ₃ / WQ + 550(4 h)	113 ± 32	87 ± 19	92 ± 24	**	**	**	682 ± 10	
Ni ₅₆ Ti ₄₁ Hf ₃ / WQ + 300(12 h)	65 ± 21	65 ± 21	51±19	**	**	**	752 ± 7	
Ni ₅₆ Ti ₄₁ Hf ₃ / WQ + 300(12 h) + 550(4 h)	138 ± 41	94 ± 23	105 ± 33	28 ± 4	13 ± 2	104 ± 13	710 ± 2	
Ni ₅₆ Ti ₃₆ Hf ₈ / WQ	**	**	**	2 - 5	2 - 5	??	716 ± 4	
Ni ₅₆ Ti ₃₆ Hf ₈ / WQ + 550(4 h)	**	**	**	21 ± 6	8 ± 2	17 ± 6	700 ± 7	
Ni ₅₆ Ti ₃₆ Hf ₈ / WQ + 300(12 h)	**	**	**	2 - 5	2 - 5	??	705 ± 8	
Ni ₅₆ Ti ₃₆ Hf ₈ / WQ + 300(12 h) + 550(4 h)	**	**	**	23 ± 5	12 ± 3	7 ± 2	769 ± 7	

Fall 2018 CANFSA Meeting – 10/2/2018