

Center for Advanced Non-Ferrous Structural Alloys An Industry/University Cooperative Research Center

Project 29-L: Identification of Deformation Mechanisms in Thermally Stable Cast Al-Cu Alloys via Neutron Diffraction

Fall 2018 Semi-Annual Meeting Colorado School of Mines, Golden, CO October 2-4, 2018

IOWA STATE

UNIVERSI

Student: Brian Milligan (Mines) Faculty: Amy Clarke (Mines) Industrial Mentors: Amit Shyam (ORNL) Other Participants: Dong Ma (ORNL), Lawrence Allard (ORNL), Francisco Coury (Mines)

Center Proprietary – Terms of CANFSA Membership Agreement Apply

1

Project 29-L: Identification of Deformation Mechanisms in Thermally Stable Cast AI-Cu Alloys via Neutron Diffraction

 Student: Brian Milligan (Mines) Advisor(s): Amy Clarke (Mines), Amit Shyam (ORNL) 	Project Duration PhD: August 2017 to May 2021
 Problem Deformation and phase transformation behavior at a microscale in Al-Cu alloys is not well understood. <u>Objective</u> Apply in-situ neutron diffraction, SEM, TEM, mechanical testing, and synchrotron X-ray imaging to better understand the mechanical behavior and phase transformations in these alloys. <u>Benefit</u> Improvement of properties of thermally stable Al-Cu alloys (including new ORNL alloy), as well as furthering scientific understanding of precipitation strengthened Al alloys. 	 <u>Recent Progress</u> User proposal to study phase transformations at Argonne National Laboratory using transmission X- ray microscopy (TXM) accepted. Initial TXM tomography (3-D) data collected. Applied quantitative modeling at a macro-scale to study strain hardening in 206 Al. Developed framework for quantification of strain hardening mechanisms from energetic standpoint

Metrics							
Description	% Complete	Status					
1. Initial literature review	70%	•					
2. In situ neutron diffraction, creep testing, and TXM	40%	•					
3. Microstructural characterization pre- and post- creep and tension	50%	•					
4. Qualitative assessment of neutron diffraction and mechanical test data	50%	•					
5. Application and development of qualitative modelling to micro-scale diffraction data	30%	•					

Industrial Relevance

- Cast Al-Cu alloys have high strength, low density and are easy to manufacture
 - Used in various industries such as for cylinder heads in light-duty engines
- Understanding of mechanical behavior can be used to improve them
 - Grain-level mechanisms may be used in unique strengthening methods e.g. texture

Cylinder head cast with ORNL ACMZ alloy. Credit: Jason Richards (ORNL)

Background in the model system 206 AI

- Model Al-Cu system with a wide range of precipitates
- Simplifies many assumptions that would be required in other alloys
- All 206 experiments shown were performed at room temperature

206 AI composition

Si	Cu	Mg	Fe	Mn	Ti	ΑΙ
0.12	4.5	0.30	0.14	0.23	0.02	bal.

Heat treatment schedule

Step	Solutionize	Quench	Peak Age	Overage
Temperature (°C)	500	80-90	190	200, 300
Time (h)	5	<1	5	200

Fall 2018 CANFSA Meeting – 10/2/2018

206 Al Microstructural Development

 Precipitates transform from shearable GP zones and θ" to semi-shearable θ' and unshearable θ

Micrographs courtesy of Lawrence Allard (ORNL) and Francisco Coury (Mines)

Fall 2018 CANFSA Meeting - 10/2/2018

Neutron Diffraction used to Measure Internal Stress by Grain Orientation

Anisotropy Observed in Neutron Results CANFSA

Fall 2018 CANFSA Meeting – 10/2/2018

Macroscopic strain hardening model

• da Costa Teixiera et al. model for Al-Cu strain hardening

$$\sigma_{\rm f} = \sigma_0 + \sigma_{\rm ss} + \left(\sigma_{\rm p}^{\rm n} + \sigma_{\rm d}(\epsilon_{\rm p})^{\rm n}\right)^{1/{\rm n}} + \langle\sigma\rangle(\epsilon_{\rm p})$$

J. da Costa Teixiera et al, Acta Mater. 57 (2009) p.6075

Fall 2018 CANFSA Meeting - 10/2/2018

Changing deformation mechanisms due to growing precipitates

- As precipitates grow, Orowan looping becomes active and kinematic hardening increases
- Even relatively thick θ' precipitates may be sheared through *delayed shearing*

Interfacial matchup on newlycreated interface from θ' shearing

- 2 contributions to interfacial energy: chemical and lattice mismatch
- Both terms are normally isotropic
- Lattice mismatch strain may be counteracted or aggravated by applied stress, if there is also a mismatch in Young's modulus
 - This effect would be anisotropic based on applied stress direction

Energetics of New Interface Formation during Shearing

•
$$\Delta \gamma_{shear} \propto \sigma_{app} * \Delta Y * \delta * \sum_{n} \frac{(\cos(\theta) - \nu \sin(\theta))}{n}$$

- $\Delta \gamma_{shear}$ = difference in shearing energy due to applied stress
- σ_{app} = applied stress
- $-\Delta Y$ = modulus mismatch
- δ = lattice mismatch
- θ = angle between lattice mismatch & applied stress
- $-\nu$ = Poisson's ratio
- Sum over full multiplicity of both directions
- Good correlation is taken as evidence for importance of mechanism

Orientation-specific strain hardening rate (Pa)

Existing case: Rafting of γ-γ' structures in Ni superalloys

Tension

- Morphology of γ' is changed in tension or compression
- Energy for precipitate growth is affected by external stress
 - Applied stress causes less strain in stiffer phase
 - This can change strain energy in particular interface orientations
- $\gamma_{shear} \propto \sigma_{app} * \delta_{misfit} * \Delta Y$
- Hypothesis: Same effect can increase/decrease likelihood of precipitate shearing
 - Strain energy of newly created interface can be changed

F.R.N. Nabarro, Metall. Mater. Trans. A 27 (1996) p.513

Compression

Fall 2018 CANFSA Meeting - 10/2/2018

Fall 2018 CANFSA Meeting – 10/2/2018

Thanks for your attention.

Questions?

 Fall 2018 CANFSA Meeting – 10/2/2018
 Center Proprietary – Terms of CANFSA Membership Agreement Apply