

Center for Advanced Non-Ferrous Structural Alloys An Industry/University Cooperative Research Center

Project 38-L: On-Demand Casting of Net-Shape Titanium Components for Improved Weapon System Reliability

Fall 2018 Semi-Annual Meeting Colorado School of Mines, Golden, CO October 2-4, 2018

IOWA STATE

UNIVERSI

Student: Undergraduate student TBD (Mines) Faculty: Steve Midson (Mines) Industrial Mentors: Paul Brancaleon (NADCA)

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Project 38-L: On-Demand Casting of Net-Shape Titanium Components for Improved Weapon System Reliability

- Undergraduate student: TBD
- Advisor: S. Midson (Mines)

Project Duration

UG August 2018 to July 2023

- <u>Problem</u>: The supply chain for low-cost, lightweight net-shape titanium components needs to be expanded.
- <u>Objective</u>: Extend the die casting process for the casting of titanium alloys. Identify a permanent die + coating system for titanium die casting.
- <u>Benefit:</u> Die casting is a low-cost approach for producing components, and so the extension of die casting to Ti-alloys could have a significant impact on the titanium marketplace.

Recent Progress

- Reviewed the literature on the castability of titanium alloys
- Performed calculations to determine the best approach for the fabrication of a permanent die that can withstand the high temperatures associated with molten titanium alloys.

Metrics					
Description	% Complete	Status			
1. Review of castability of conventional titanium alloys	5%	•			
2. Identification of titanium alloy with improved castability (if necessary)	0%	•			
 Identification of candidate high temperature resistant die casting die materials & coatings for titanium die casting 	10%	•			
4. Provide a coated tool for the demonstration of on-demand melting	0%	•			

Project Outline

- Three Universities
 - CSM, Purdue, University of Alabama at Birmingham
- Technology:
 - Improve an on-demand melting system for casting of titanium.
 - Develop advanced die materials for casting titanium.
 - Ensure castability through modifications of titanium alloy composition
 - Optimize metal quality

Project Tasks - CSM

- Provide an improved titanium alloy composition for die castability and high performance properties
- 2. Identify candidate high temperature resistant die casting die materials and coatings for titanium casting
- 3. Provide a coated tool for the demonstration of on-demand casting of titanium

Alley	Melting Temperatures		
Alloy	(°C)	(°F)	
Aluminum die casting alloys	~600	~1,110	
Pure copper	1,083	1,981	
Titanium alloys	~1,650	~3,000	

 Titanium's melting temperature is significantly higher than either aluminum alloys or pure copper

Die Surface Temperature

- Surface of the die reaches close to the temperature of the liquid metal
- For aluminum die casting
 - Die surface reaches ~ 1000°F (537°C)
- So for die casting pure copper
 - Surface of the die reached ~1850°F (1000°C)
- For die casting titanium
 - Die surface might be expected to reach about 2900°F (1600°C)
 - Higher than the melting temperature of H13 steel which is 2482-2680°F

Thermal Expansion of the Die Surface

8

- If the die surface is heated to a very high temperature
 - The thermal expansion of the die surface will be very large
 - Plastic deformation of the die surface will occur on each shot
 - Excessive heat checking will occur very quickly
- So along with conventional H13 steel dies

- Other coated die concepts will be considered

Die Casting Titanium

- Proposed approach is to use a coating on the surface of the die
 - To protect the die surface from reaction with titanium
 - To reduce the temperature of the die surface

 Calculate the impact of various coatings on the maximum temperature of the die surface

• Temperature T_i

Impact of Die Coatings on Die Surface Temperature

• At equilibrium, heat flux through coating and die must be equal

Constant titanium temperature: T_m Constant water temperature: T_w Coating thickness: δ_c Thickness of die material (distance to water line): δ_s Thermal conductivity of coating: k_c Thermal conductivity of die material: k_s

 Examine the impact of different coatings and die materials on T_i

Fall 2018 CANFSA Meeting – 10/3/2018

Calculated Die Temperatures - Graphite Liner

- Machine a thick (12 mm) graphite liner for the die
 - Rammed graphite molds are commonly used for casting of titanium alloys

Sleeve		bleeve Die Material		Temperature	at Interface
Material	Thickness	Material	Thickness	Deg-C	Deg-F
Graphite	12 mm	H13 steel	12 mm	845	1553
Graphite	12 mm	Anviloy	12 mm	459	858
Graphite	12 mm	Cu-Be	12 mm	337	639

• Will a graphite liner survive the die casting process?

Calculated Die Temperatures - Yttria Coating

- Thin (1.5 mm) surface layer of yttria (Y_2O_3)
 - Yttria is a coating commonly used for investment casting of titanium alloys

Coating Die Material		aterial	Temperature	at Interface	
Material	Thickness	Material	Thickness	Deg-C	Deg-F
Yttria	1.5 mm	H13 steel	12 mm	1045	1913
Yttria	1.5 mm	Anviloy	12 mm	632	1170
Yttria	1.5 mm	Cu-Be	12 mm	447	837

• Will a thin layer of yttria survive the die casting process?

Summary – Coated Tool

- If we utilize this approach, several questions need to be answered
 - Will this approach of coating + die material work for the die casting of titanium?
 - How would the coatings be fabricated?
 - Graphite lining would be fabricated by CNC machining
 - Yttria coating would have to be applied to the die face
 - Can the graphite liner or yttria coating survive the die casting process?
 - For this project, target die life is 1,000 shots

Future Work

- Further evaluate the application of coated dies
 - Optimize coating/liner thickness based on thermal expansion
 - i.e., what coating thickness generates the same expansion for the coating/liner and for the die?
 - How can a yttria coating be applied?
 - Examine coatings used on turbine blades for airplane engines
- Explore previous work
 - What die materials were used for previous attempts to die cast titanium
 - Talk with people involved with these projects

Center for Advanced **Non-Ferrous Structural Alloys** An Industry/University Cooperative Research Center

Project 38-L: On-Demand Casting of Net-Shape Titanium Components for Improved Weapon System Reliability

Student: TBD (Undergraduate)

Faculty: Stephen Midson (Mines)

Industrial Partners: NADCA

Project Duration: August 2018 – July 2023

Achievement

Starting to examine the best approach for fabricating a die casting die that will withstand molten titanium temperatures.

Significance and Impact

Die casting is a low cost manufacturing process, and so the extension of die casting to titanium alloys could have a significant impact on the titanium marketplace.

Research Details

Part of a three-university project to evaluate the feasibility of titanium die casting.

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Project 38-L: On-Demand Casting of Net-Shape Titanium Components for Improved Weapon System Reliability

Student: TBD (undergraduate)

Faculty: Stephen Midson

Industrial Partners: NADCA

Project Duration: August 2018 - July 2023

Achievement

• Starting to examine the best approach for fabricating a die casting die that will withstand molten titanium temperatures.

Significance and Impact

 Die casting is a low cost manufacturing process, and so the extension of die casting to titanium alloys could have a significant impact on the titanium marketplace.

Research Details

 Part of a three-university project to evaluate the feasibility of titanium die casting.

Project 38-L: On-Demand Casting of Net-Shape Titanium Components for Improved Weapon System Reliability

CANFSA Center for ADVANCED NON-FERROUS STRUCTURAL ALLOYS

Student: TBD (undergraduate)

Faculty: Stephen Midson

Industrial Partners:

Project Duration: August 2018 - July 2023

Program Goal

• Extend the die casting process to high melting temperature metals such as titanium alloys.

Approach

 Develop an approach for fabricating die casting dies that will withstand temperatures associated with molten titanium alloys.

Benefits

 Die casting is a very low cost manufacturing process, and so the extension of die casting to titanium alloys could have a significant impact on the titanium marketplace.

