

#### Center for Advanced Non-Ferrous Structural Alloys An Industry/University Cooperative Research Center

#### Project 31-L: Accumulative Roll Bonding of Al and Ti Sheets Toward Low Temperature Superplasticity

#### Fall 2018 Semi-Annual Meeting Colorado School of Mines, Golden, CO October 2-4, 2018

Student: Brady McBride (Mines) Faculty: Dr. Kester Clarke (Mines) Industrial Mentors: Ravi Verma (Boeing), John Carpenter (LANL)





1

#### **Project 31-L: Accumulative Roll Bonding of Al and Ti Sheets Toward Low Temperature Superplasticity**



| <ul> <li>Student: Brady McBride (Mines)</li> <li>Advisor(s): Kester Clarke (Mines)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                 | Project Duration<br>PhD: September 2017 to March 2021                                                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li><u>Problem:</u> Superplastic forming requires high temperatures and very low strain rates.</li> <li><u>Objective:</u> Develop an in-depth understanding of how accumulative roll bonding affects temperature dependent strength and superplastic properties of AI and Ti alloys.</li> <li><u>Benefit:</u> Low temperature superplasticity could result in reduced cost and cycle time due to reduced deformation temperatures and increased strain rates.</li> </ul> | <ul> <li><u>Recent Progress</u></li> <li>Rolling mill upgrades: edge guides and load cell data acquisition system</li> <li>Eight successful roll bonding cycles of Al 1100</li> <li>Room temperature tensile tests of roll bonded Al 1100 alloys subject to different heat treatments</li> </ul> |

| Metrics                                                               |            |        |  |
|-----------------------------------------------------------------------|------------|--------|--|
| Description                                                           | % Complete | Status |  |
| 1. Literature review                                                  | 30%        | •      |  |
| 2. ARB process development                                            | 75%        | •      |  |
| 3. Investigate roll bonding process parameters                        | 20%        | •      |  |
| 4. Mechanical & microstructural characterization                      | 5%         | •      |  |
| 5. Process refinement / alloy selection for optimized superplasticity | 0%         | •      |  |

Fall 2018 CANFSA Meeting – 10/2/2018

Center Proprietary – Terms of CANFSA Membership Agreement Apply

### **Overview**

- Project introduction
- Development of ARB Process
  - Available equipment
  - Tooling and process development
- Mechanical Properties of ARBed Material
  - Room temperature
  - Post-process heat treatments
- Bonding Development
  - Theory of bonding
  - Fracture character
- Next Steps



# **Industrial Relevance**





Enhanced properties:

- Hall-Petch strengthening
- low temperature superplasticity

**Applications:** 

- superplastic forming
- high strength sheet components

Benefits:

- reduced cycle time
- reduced die wear
- reduced processing cost

Saito et al., *Acta Materialia*, 1999. Cleveland et al., *Materials Science and Engineering A*, 2003.

# Fenn Rolling Mill at CSM



Load capacity:100,000 lbsRoll diameter:5.25"Roll width:8"Roll speed:37 RPMRoll surface speed:50 SFPM





# **Tooling Development**



#### Adjustable edge guides



2 degrees of freedom Sheet Width: 0.85" – 3.0" Sheet Height: 0 – 0.25" Load cell data acquisition system



2X 50,000 lb load cells Resolution +/-175 lbs Automatic load detection

 Fall 2018 CANFSA Meeting – 10/2/2018
 Center Proprietary – Terms of CANFSA Membership Agreement Apply

# **Tooling Development**



#### CNC Tensile Fixture



Machine up to 8 samples simultaneously

#### Wire Brushing Clamp-Down Fixture



Non-contaminating aluminum surface



## **AI 1100 Macroscopic Samples**



CANFSA Center for ADVANCED NON-FERROUS STRUCTURAL ALLOYS

# Fully appealed 50

350



# AI 1100 RT Tensile Tests

- 0.50"

~4″

1.00"







Post-process heat treatment in excess of 200°C significantly alters mechanical properties.

Fall 2018 CANFSA Meeting – 10/2/2018 Center Proprietary – Terms of CA

**Center Proprietary – Terms of CANFSA Membership Agreement Apply** 

#### 10

# **Post ARB Heat Treatments**

100°C

200°C

for 1 hour





## **Bonding Interfaces**





Vaidyanath & Milner, British Welding Journal, 1960.

# **Bonding Interfaces**





Li, Nagai & Yin, Science and Technology of Advanced Materials, 2008.

Fall 2018 CANFSA Meeting – 10/2/2018

Center Proprietary – Terms of CANFSA Membership Agreement Apply

# **Bonding Interfaces**

2 cycles



 4 layers
 16 layers

 4 cycles
 10 layers

 64 layers
 256 layers

6 cycles

Individual layers indistinguishable after 4<sup>th</sup> cycle



0.1 mm

#### Tensile Fracture Surfaces: As Processed <sup>4 layers</sup>



2 cycles 4 cy

16 layers



Extreme centerline, quarterline delamination

> Layers delaminate individually





# Tensile Fracture Surfaces: 100°C for 1 hour

2 cycles





Extreme centerline delamination

Layers delaminate in groups







**Center Proprietary – Terms of CANFSA Membership Agreement Apply** 

# Tensile Fracture Surfaces: 200°C for 1 hour

2 cycles





No centerline delamination

Homogenous deformation





Fall 2018 CANFSA Meeting - 10/2/2018

Center Proprietary – Terms of CANFSA Membership Agreement Apply

# **Tensile Fracture Evolution**



As Processed 100°C for 1 hour 200°C for 1 hour

Delamination of multiple bonds

Delamination of most recent bonds

Homogeneous deformation

#### Fall 2018 CANFSA Meeting – 10/2/2018

2", 40% 90,000 Roll Separating Force (lbs) 80,000 1", 50% 70,000 60,000 50,000 40,000 30,000 20,000 10,000 Kunnty Marthant Marthan 0

100,000

# **ARB Rolling Loads in 5182**



2″

1″

Mitigation Strategies:

- wider samples with high capacity mill (>50 tons)
- preheat before rolling



# **Moving Forward**



- Mechanical and microstructural characterization
  - Gleeble, load frame furnace
  - EBSD, TEM
- Bonding mechanisms
  - Preheating and post-deformation heat treatments



- Other alloys
  - 5182, 5754 (Al-Mg)



AUBIT

0<sup>ct-11</sup>

Jan 18

A91-18

141-18

Coursework

Progress

**Develop ARB Process** 

**Microstructural Characterization** 

**Optimized Superplasticity** 

PhD Qualifier Exam

PhD Proposal

PhD Thesis



0<sup>ct-20</sup>

Jan 21

A91-21

Jan 19

0<sup>ct:18</sup>

A91-19

141-29

0<sup>ct-19</sup>

18<sup>11,20</sup>

A91-20

141-20



# Thank you

# Brady McBride bmcbride@mines.edu

 Fall 2018 CANFSA Meeting – 10/2/2018
 Center Proprietary – Terms of CANFSA Membership Agreement Apply

## References



- Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai, "Novel Ultra-High Straining Process For Bulk Materials Development Of The Accumulative Roll-Bonding (ARB) Process," Acta Materialia, vol. 47, no. 2, 1999.
- [2] R. M. Cleveland, A. K. Ghosh, and J. R. Bradley, "Comparison of superplastic behavior in two 5083 aluminum alloys," Materials Science and Engineering A, vol. 351, no. 1-2, pp. 228–236, 2003.
- [3] L. Vaidyanath and D. Milner, "Significant of Surface Preparation in Roll Bonding," British Welding Journal, vol. 7, no. 1, pp. 1–6, 1960.
- [4] L. Li, K. Nagai, and F. Yin, "Progress in cold roll bonding of metals," Science and Technology of Advanced Materials, vol. 9, no. 2, 2008.

### AI 1100 RT Tensile Tests

Ultimate Tensile Strength (MPa) Strength (MPa Ductility (%) YS (MPa) UTS (MPa) - Elongation% Tensile Strength → Uniform Elongation 

Similar results to published study by Pirgazi et al., 2008.

Pirgazi et al., 2008.





# Fall 2018 CANFSA Meeting – 10/2/2018 Center Proprietary – Terms of CANFSA Membership Agreement Apply





# **ARB Rolling Loads**





# **Center for Advanced Non-Ferrous Structural Alloys** An Industry/University Cooperative Research Center

#### Project 31: Accumulative Roll Bonding of Al and Ti Sheets Toward Low Temperature Superplasticity

Student: Brady McBride

Faculty: Kester Clarke

Industrial Partners: Boeing (Ravi Verma), LANL (John Carpenter)

Project Duration: August 2017 – May 2021

#### Achievement

Development of a process capable of producing ultra-fine grained microstructures in AI and Ti alloys that exhibit superplasticity at lower temperatures than conventional processing methods.

#### Significance and Impact

Low temperature superplasticity would enhance superplastic forming operations by reducing cycle time as well as reducing costs related to heating and die wear.

#### **Research Details**

Development of a specific rolling process and tooling as with microstructural and mechanical characterization to quantify superplastic responses of processed material.





Cross-section of roll bonded AI 1100 showing interfaces between 128 individual layers of material. 25

#### IOWA STATE UNIVERSIT

**Center Proprietary – Terms of CANFSA** Membership Agreement Apply

#### **Project 31: Accumulative Roll Bonding of Al and Ti Sheets Toward Low Temperature Superplasticity**

Student: Brady McBride

Faculty: Kester Clarke

Industrial Partners: Boeing (Ravi Verma), LANL (John Carpenter)

Project Duration: August 2017 – May 2021

#### Achievement

 Development of a process capable of producing ultra-fine grained microstructures in AI and Ti alloys that exhibit superplasticity at lower temperatures than conventional processing methods.

#### Significance and Impact

 Low temperature superplasticity would enhance superplastic forming operations by reducing cycle time as well as reducing costs related to heating and die wear.

#### **Research Details**

 Improved superplastic formability by means of reduced temperature and increased forming strain rates will reduce operating costs and prolong die life.



Cross-section of roll bonded AI 1100 showing interfaces between 128 individual layers of material.



#### **Project 31: Accumulative Roll Bonding of Al and Ti Sheets Toward Low Temperature Superplasticity**

Student: Brady McBride

Faculty: Kester Clarke

Industrial Partners: Boeing (Ravi Verma), LANL (John Carpenter)

Project Duration: August 2017 – May 2021

#### **Program Goal**

 Investigate enhanced superplasticity of ultra fine grained materials produced by accumulative roll bonding

#### **Approach**

 Develop a process for accumulative roll bonding and determine microstructural mechanisms related to superplasticity

#### **Benefits**

 Improved superplastic formability by means of reduced temperature and increased forming strain rates will reduce operating costs and prolong die life



Cross-section of roll bonded Al 1100 showing interfaces between 128 individual layers of material.

