

Center for Advanced **Non-Ferrous Structural Alloys** An Industry/University Cooperative Research Center

Project 28-L: Laboratory Testing to Identify Permanent PVD Coatings to Minimize Lubricant Use During Forging

Fall 2018 Semi-Annual Meeting Colorado School of Mines, Golden, CO October 2-4, 2018

Student: Trevor Kehe (Mines) Faculty: Kester Clarke, Stephen Midson (Mines) Industrial Mentors: Rob Mayer (Queen City Forge) Other Participants: Forging Industry Research and Educational Foundation

NIVERS

1

Project 28-L: Laboratory Testing to Identify Permanent PVD Coatings to Minimize Lubricant Use During Forging

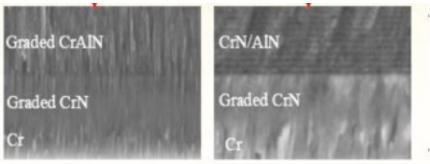
 Student: Trevor Kehe (Mines undergraduate) Advisor(s): Kester Clarke, Stephen Midson (Mines) 	Project Duration UG: May 2017 to May 2019
 <u>Problem</u>: Forging operations can use significant amounts of lubricant, which can sometimes affect component outcomes and excessive overspray. <u>Objective</u>: Evaluate die coatings that can reduce the coefficient of friction of the workpiece to the die. <u>Benefit</u>: Reduced lubricant use and greater processing consistency. 	 <u>Recent Progress</u> Laboratory scale dies with inserts have been designed and manufactured. Initial uncoated room temperature ring-friction tests have been completed. Four sets of die inserts have been PVD coated at vendors.

Description	% Complete	Status
1. Literature review	100%	•
2. Die design	100%	•
3. Die manufacture and insert PVD coating	90%	•
4. Ring-friction testing at room and elevated temperatures	35%	•
5. Final report and project summary	15%	•

Fall 2018 CANFSA Meeting – 10/2/2018

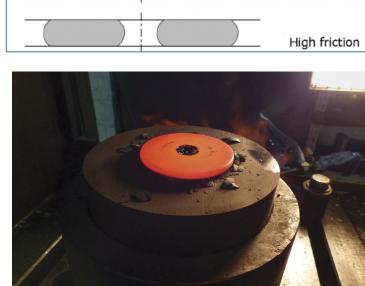
Center Proprietary – Terms of CANFSA Membership Agreement Apply

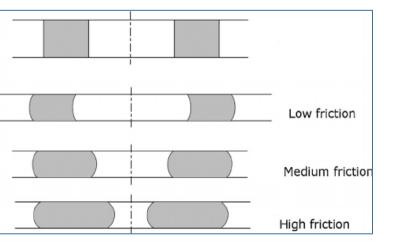
Industrial Relevance



- Reducing the friction coefficient between die and workpiece in forging will:
 - -reduce the amount of lubricant required
 - -reduce lubricant overspray
 - -improve cycle times
 - -improve die life
 - -improve quality of forgings

Project approach

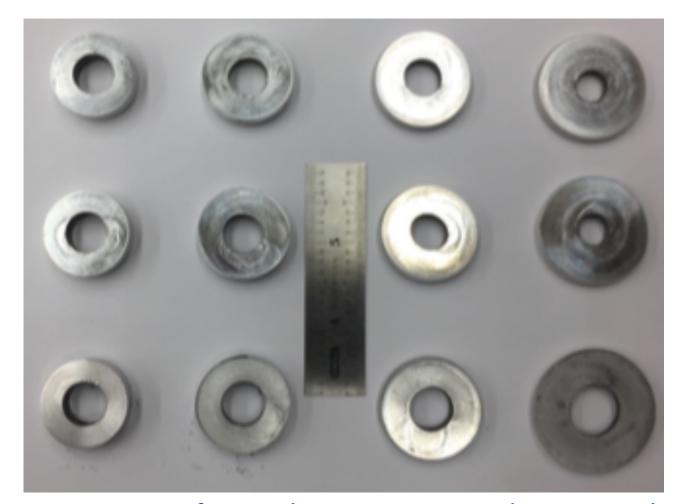

- Leverage the recent Mines "Lube Free" die casting coating project
 - New PVD coatings reduced lubricant use significantly
 - Apply similar coating technologies to forging dies



- Develop flexible testing methodology
 - Evaluate relative coefficients of friction of uncoated and PVD coated surfaces
 - Perform tests using aluminum samples at temperatures from ambient to 500°C
 - Investigate effects of lubricant use in combination with PVD coatings

Ring friction test

Low friction Medium friction

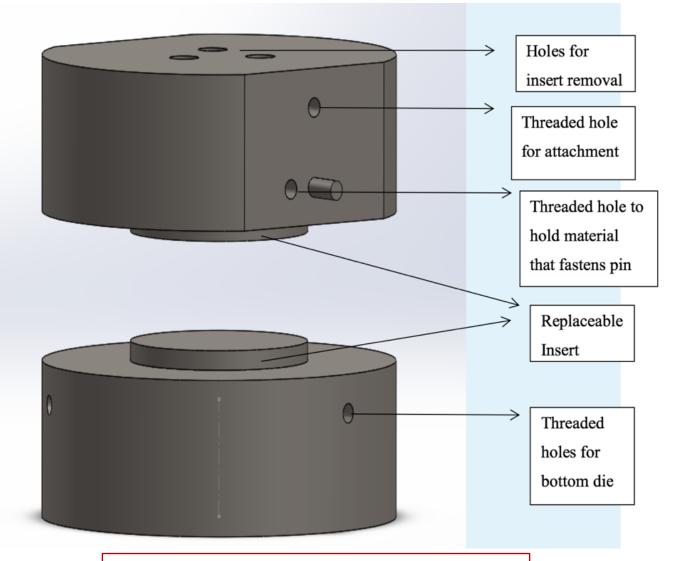


Ring friction test: 6061 @ RT

No lubricant

Dry graphite spray

MoS₂ grease

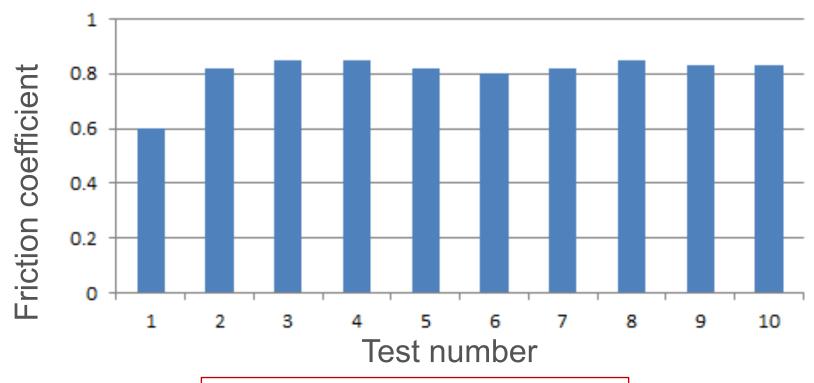

Left to right: Increasing reductions in height Top to bottom: Increasingly effective lubricants

Fall 2018 CANFSA Meeting - 10/2/2018

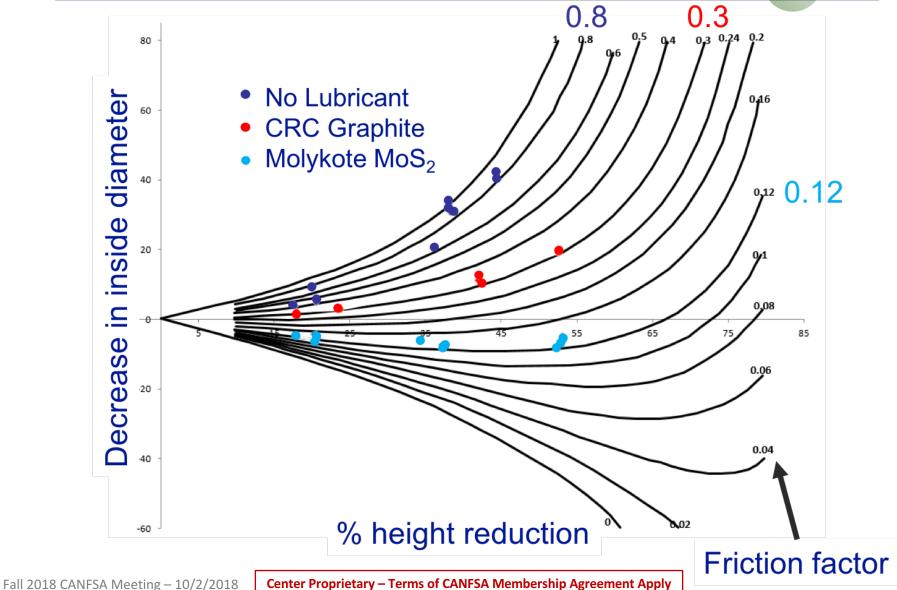
Center Proprietary – Terms of CANFSA Membership Agreement Apply

Die design and fabrication

Die design and fabrication



Measured friction coefficient



- Die inserts polished to 1µm diamond to normalize surface topology
- Measured friction coefficient over multiple tests
 - No lubricant, room temperature, uncoated dies, 6061 samples

Measured friction coefficient, room temperature

PVD coatings

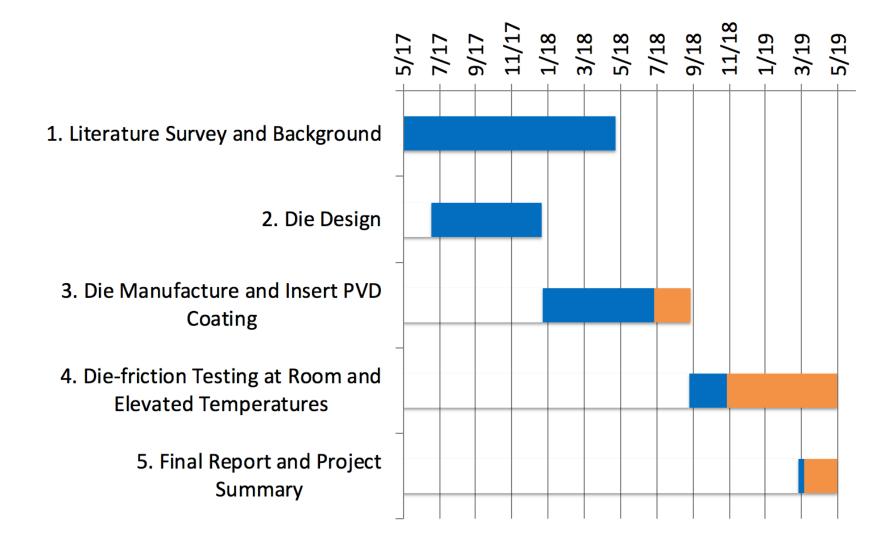
- 6 die sets (uppers + lowers)
 - -1 H13 set used for no-coating baseline
 - -4 H13 sets are at vendors for coating
 - Can be re-coated
 - Surface imaging, tribology, and metallographic examination of coating performance also possible
 - 1 W303 set will be used to validate no-coating baseline values and coating effectiveness on a different substrate

PVD coatings

Type of Coating	Specifics	Supplier	Temperature
Single-layer hard coatings	TiCN	Tribologix, Dayton, Ionbond	<400°C
Multi-layer hard coatings	✓ Super MoS₂	Tribologix	375°C
	Ti-MoS _{2 (MOST)}	Teer in UK, Ionbond	<350°C
	AlCrN-MoS ₂	Tribologix	
	TiCN-TiMoS ₂	Teer	
	CrN-DLC	Phygen	<300°C
	CrN-SiC	Phygen	
	Vi-Kote	Tribologix	350°C
Noble Metals	Hard coating plus noble metal	Voevodin, Scharf & Samir at UNT	<500°C
Highly lubricious oxide		None identified	
Plasma Sprayed	PS400	NASA	
Laser Textured	Laser texture a TiCN coating	Tribologix/CSM	

PVD Coating test matrix

- Measure coefficient of friction on uncoated dies and four initial PVD coatings selected (5)
- Vary temperature from ambient to 300°C (4)
- Test with and without lubricant (3)
 - Graphite spray
 - MoS₂ grease
- Three sets of duplicate rings at three deformation levels (9)


Summary

- Flexible forging tooling has been designed and built
 - Room temperature to 500°C
 - Loads to 100 kip
 - 6 sets of interchangeable die inserts
- Ring-compression friction tests have been validated
 - Polished as-heat treated (uncoated) dies
 - Room temperature to 300°C
- Forging die coatings
 - Literature review complete
 - List of promising coatings compiled
 - Four initial PVD coatings selected for application to dies (just received!)

Progress

Fall 2018 CANFSA Meeting – 10/2/2018

Trevor Kehe

- Senior in Metallurgical and Materials Engineering, graduating May 2019.
- Future Plans
 - Graduate school (Master's) in physical metallurgy or corrosion
- Other Interests
 - Hiking, climbing, baseball
- Mines Baseball
 - 2nd in RMAC

Acknowledgements

- FIERF stage gated grant, "Laboratory Testing to Identify Permanent PVD Coatings to Minimize Lubricants Use During Forging"
- FIERF board stage gate reviews and guidance
- Die materials
 - Bohler-Uddeholm (Patricia Miller), H13 and W303 inserts
 - Hitachi (Tom Bell), H13 inserts
 - Finkl (Al Underys), 4340 die blocks
- NSF REU program grant through the Center for Advanced Non-Ferrous Structural Alloys
- CSM undergraduate research support

Thank you very much!

Trevor Kehe tjkehe@mines.edu

Center for Advanced **Non-Ferrous Structural Alloys** An Industry/University Cooperative Research Center

Project 28-L: Laboratory Testing to Identify Permanent PVD Coatings to Minimize Lubricant Use **During Forging**

Student: *Trevor Kehe (Undergraduate)*

Faculty: Kester Clarke, Stephen Midson (Mines)

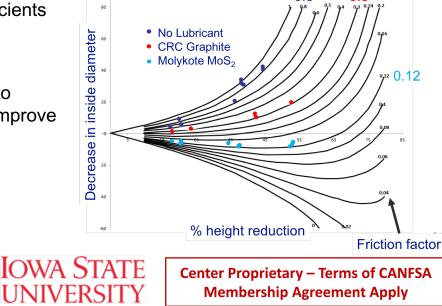
Industrial Partners: QCF, FIERF

Project Duration: May 2017 – May 2019

Achievement

Developed test methodology to measure friction coefficients during forging at temperatures up to 500°C.

Significance and Impact


PVD coatings with reduced friction have the potential to reduce the need for lubricant, reduce overspray, and improve cycle times, die life, and guality of forgings.

Research Details

Initial trials on newly designed tooling show easily distinguishable friction coefficients with varying test conditions.

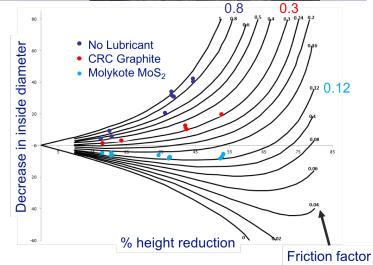
Project 28-L: Laboratory Testing to Identify Permanent PVD Coatings to Minimize Lubricant Use During Forging

Student: *Trevor Kehe (undergraduate)* **Faculty:** *Kester Clarke, Stephen Midson* **Industrial Partners:** QCF, FIERF **Project Duration:** *May* 2017 – *May* 2019

Achievement

 Developed test methodology to measure friction coefficients during forging up to 500°C.

Significance and Impact


 PVD coatings with reduced friction have the potential to reduce the need for lubricant, reduce overspray, and improve cycle times, die life, and quality of forgings.

Research Details

 Initial trials on newly designed tooling show easily distinguishable friction coefficients with varying test conditions.

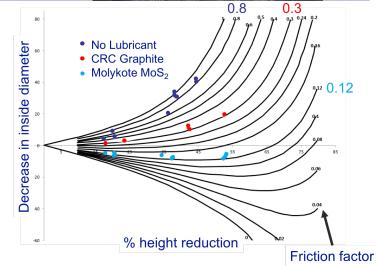
Project 28-L: Laboratory Testing to Identify Permanent PVD Coatings to Minimize Lubricant Use During Forging

Student: *Trevor Kehe (undergraduate)* **Faculty:** *Kester Clarke, Stephen Midson* **Industrial Partners:** *QCF, FIERF* **Project Duration:** *May* 2017-May 2019

Program Goal

 Develop a testing methodology for measurement of friction coefficient during forging, and evaluate effectiveness of PVD coatings.

Approach


 Design and build custom die set to allow forging simulations at temperatures to 500°C.

Benefits

 The potential for reduced lubricant use and greater processing consistency in forging operations.

