

Center for Advanced Non-Ferrous Structural Alloys An Industry/University Cooperative Research Center

Project 30-L: Microstructural Evolution of Metallic Alloys during Rapid Solidification

Fall 2018 Semi-Annual Meeting Colorado School of Mines, Golden, CO October 2-4, 2018

Student: Chloe Johnson (Mines) Faculty: Amy Clarke (Mines) Industrial Mentors: Los Alamos National Laboratory, Boeing Other Participants: Yaofeng Guo (Mines), Joe Jankowski (Mines), Francisco Coury (Mines), Joe McKeown (Lawrence Livermore National Laboratory)

IOWA STATE

UNIVERS

1

Project 30: Microstructural Evolution of Metallic Alloys during Rapid Solidification

 Student: Chloe Johnson (Mines) Advisor(s): Amy Clarke (Mines) 	Project Duration PhD: August 2017 to May 2021
 <u>Problem</u>: Microstructural evolution during rapid solidification is not well understood. <u>Objective</u>: Understand the formation of unique microstructures (e.g. metastable phases, grain sizes and morphologies, local chemistry) in aluminum alloys. <u>Benefit</u>: Understand and control microstructural evolution during rapid solidification to inform industrial processes (e.g. additive manufacturing, welding, etc.) and the development of microstructural models. 	 <u>Recent Progress</u> Surveyed different techniques for rapid solidification that produce a range of solidification processing conditions that will be used in the project Received aluminum 6061 metal matrix composite (MMC) powder for future in-situ solidification studies Laser welding studies performed to evaluate solidification conditions and resultant microstructure User proposal submitted to the Advanced Photon Source (APS) at Argonne National Laboratory for in-situ imaging of simulated additive manufacturing Study metastable phases and microstructural evolution in AI-Ge with dynamic transmission electron microscopy (DTEM)

Metrics				
Description		Status		
1. Literature review	25%	•		
2. Alloy selection and survey of rapid solidification processing techniques	40%	•		
3. In-situ imaging of binary and MMC aluminum alloys		•		
4. Post-mortem microstructural characterization of phases and microstructures		•		
5. Correlate microstructural evolution during rapid solidification to (local) processing conditions		•		

Post-mortem TEM of an Al-7at.%Cu alloy film after DTEM solidification [J.T. McKeown et al., Acta Materialia (2014), 65].

- Introduce an aluminum metal matrix composite (MMC) alloy powder for potential in-situ imaging of rapid solidification
- Recent progress
 - Rapid solidification experiments at Mines (laser welding)
 - Analysis of in-situ experiments with DTEM for Al-Ge alloys
- Future Work
 - Melt spinning
 - Post-mortem analysis of DTEM samples

Grain Size Control via Inoculation

[J. H. Martin et al, Nature 2017, 549.]

Crack-free, small equiaxed grains

Grain Size Control via Inoculation

Center Proprietary – Terms of CANFSA Membership Agreement Apply

AI 6061 MMC Powder (Elementum 3D) CANFSA

Particle Size		
Range of Al6061 Particle		
Diameter (µm)	1-50	
Range of Ceramic Particle		
Diameter (µm) 1-20		

ADVANCED NON-FERROUS STRUCTURAL ALLOYS

In-situ AM Solidification Studies at APS

Center for ADVANCED NON-FERROUS STRUCTURAL ALLOYS

CANFSA

Synchrotron x-ray imaging of a Ti-6Al-4V plate sample in laser melting processes and solidification rate measurements [C. Zhao et al., Scientific Reports 2017, 7:3602].

 Fall 2018 CANFSA Meeting – 10/2/2018
 Center Proprietary – Terms of CANFSA Membership Agreement Apply

Recent Progress: Laser Welding at CANFSA **Mines**

Laser Welding Conditions	
Power (W)	Speed (IPM, mm/s)
150	100, 42
	200, 85
200	100, 42
	200, 85

Center for

ADVANCED NON-FERROUS STRUCTURAL ALLOYS

Laser welding of Al-7 at.% Cu foil at CSM.

Microstructural Characterization of Laser Welds

150W, 200IPM

Fall 2018 CANFSA Meeting – 10/2/2018 **Center Proprietary – Terms of CANFSA Membership Agreement Apply**

Microstructural Characterization of Laser Welds

Microstructural Characterization of Laser Welds

Solidification Velocity Calculations

 $V_s = V_b cos(\theta)$

 V_s – Solidification Velocity V_b – Laser Scan Speed Θ – Angle between the two velocity vectors

Solidification Velocity of Laser Welds		
Welding condition	Average Solidification Velocity (mm/s)	
150 W, 42 mm/s	40	
150 W, 85 mm/s	53	
200 W, 42 mm/s	39	
200 W, 85 mm/s	46	

Solidification Velocity from Literature		
Welding condition	Average Solidification Velocity (mm/s)	
1200-1750 W, 100-4000 mm/s	200-600	
1200-1750 W, 1-1000 mm/s	10-2000	
1000-1500 W, 200-4000 mm/s	200->500	

[S. Gill, Acta Metallurgica 1992, 40; S. C. Gill, Acta Metallurgica 1993, 41; M. Zimmermann, Acta Metallurgica 1989, 12]

Fall 2018 CANFSA Meeting – 10/2/2018

Melt Spinning at Mines

- Preparing crucibles:
 - Coated (BN, Yttria) & shaped quartz tubes
 - Boron nitride, machined
- Achieve another rapid solidification condition to compare with other studies
- Refine studies for off-site experiments

Example of DTEM Experiment: Al-4Cu

DTEM of an Al–4at.%Cu alloy thin-film during rapid solidification [J.T. McKeown et al., JOM 2016, 68].

Fall 2018 CANFSA Meeting - 10/2/2018

DTEM of AI-Ge: Metastable Phase Diagram of Monoclinic (M) Phase

Initial Dynamic Data: Below and Above 50.5at.%Ge

Fall 2018 CANFSA Meeting – 10/2/2018 Center Proprietary – Terms of CANFSA Membership Agreement Apply

Below 50.5at.%Ge: Al-33at.%Ge (46 at.%Ge)

Fall 2018 CANFSA Meeting – 10/2/2018

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Above 50.5 at.%Ge

Future Plans

- Additional Al-Ge DTEM experiments on compositions above and below 50.5 at.%Ge
 - Below: More complete understanding of M-phase dendrite growth and eutectic (α -phase + M-phase)
 - Above: Capture proposed formation and re-melting of Mphase
 - Use image analysis to determine phase fractions, measure phase compositions, compare with proposed metastable phase diagram (undercooling?)
- Melt spinning of binary Al alloys (Al-Cu, Al-Ag, Al-Cu-Ag)
- In-situ imaging of Al-Cu, Al-Ag, and Al-Cu-Ag alloys and 6061 MMC alloy powder

Progress

Thank you very much!

Chloe Johnson chloejohnson@mines.edu

 Fall 2018 CANFSA Meeting – 10/2/2018
 Center Proprietary – Terms of CANFSA Membership Agreement Apply

References

- [30.1] J. Mckeown, K. Zweiacker, C. Liu, D. R. Coughlin, A. J. Clarke, J. K. Baldwin, J. W. Gibbs, J. D. Roehling, S. D. Imhoff, P. J. Gibbs, D. Tourret, J. M. K. Wiezorek, G. H. Campbell, Time-resolved in situ measurements during rapid alloy solidification: experimental insight for additive manufacturing, JOM, 68 (2016).
- [30.2] J. Mckeown, A. Kulovits, C. Liu, K. Zweiacker, B. W. Reed, T. LaGrange, J. M. K. Wiezorek, G. H. Campbell, In situ transmission electron microscopy of crystal growth-mode transitions during rapid solidification of a hypoeutectic Al-Cu alloy, Acta Metallurgica et Materialia, 65 (2014) 56-68.
- [30.3] C. Zhao, K. Fezzaa, R. Cunningham, H. Wen, F. De Carlo, L. Chen, A. D. Rollett, T. Sun, Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction, Scientific Reports, 7 (2017) 1-11, 2017.
- [30.4] T. Laoui, M. Kaufman, Nonequilibrium behavior in the Al-Ge alloy system: insights into the metastable phase diagram, Metallurgical Transactions A, 22A (1991) 2141-2152.
- [30.5] T. T. Roehling, S. S. Q. Wu, S. A. Khairallah, J. D. Roehling, S. S. Soezeri, M. F. Crumb, M. J. Matthews, Modeling laser intensity profile ellipticity for microstructural control during metal additive manufacturing, Acta Metallurgical et Materialia, 128 (2017) 197-206.
- [30.6] D. Tourret, J. C. E. Mertens, E. Lieberman, S. D. Imhoff, J. W. Gibbs, K. Henderson, K. Fezzaa, A. L. Deriy, T. Sun, R. A. Lebensohn, B. M. Patterson, A. J. Clarke, From solidification processing to microstructure to mechanical properties: a multi-scale x-ray study of an Al-Cu alloy sample, Metallurgical and Materials Transactions A, 48A (2017) 5529-5546.
- [30.7] J. D. Roehling, A. Perron, J. L. Fattebert, T. Haxhimali, G. Guss, T. T. Li, D. Bober, A. W. Stokes, A. J. Clarke, P. E. A. Turchi, M. J. Matthews, J. T. Mckeown, Rapid solidification in bulk Ti-Nb alloys by single-track laser melting, JOM, (2018) 1-9.
- [30.8] M. Kaufman, J. Cunningham, H. Fraser, Metastable phase production and transformation in Al-Ge alloy films by rapid crystallization and annealing treatments, Acta Metallurgica et Materialia, 35 (1987) 1181-1192.

Center for Advanced **Non-Ferrous Structural Alloys** An Industry/University Cooperative Research Center

Project 30 – Microstructural Evolution of Metallic Alloys During Rapid Solidification

Student: Chloe Johnson

Faculty: Amy Clarke

Industrial Partners: LANL, Boeing

Project Duration: Aug. 2017 – May 2021

Achievement

Understand the relationship between rapid solidification conditions and development of metastable phases, grain sizes and morphologies, and local chemistries.

Significance and Impact

Understand and control microstructural evolution during rapid solidification to inform industrial processes (e.g. additive manufacturing, welding, etc.).

Research Details

Evaluate the effect of solidification conditions on the resultant microstructures and phases in chosen aluminum alloys (binary, ternary, MMC) using in/ex-situ techniques.

Post-mortem TEM of an Al-7at.%Cu alloy film after DTEM solidification [J.T. McKeown et al., Acta Materialia 2014, 65].

COLORADOSCHOOL

IOWA STATE UNIVERSIT

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Project 30- Microstructural Evolution of Metallic Alloys during Rapid Solidification

Student: Chloe Johnson

Faculty: Amy Clarke

Industrial Partners: LANL, Boeing

Project Duration: Aug. 2017 – May 2021

Program Goal

 Understand the relationship between rapid solidification conditions and development of metastable phases, grain sizes and morphologies, and local chemistries.

<u>Approach</u>

 Evaluate the effect of solidification conditions on the resultant microstructures and phases in a variety of aluminum alloys (binary, ternary, MMC) using in/ex-situ techniques.

Benefits

 Understand and control microstructural evolution during rapid solidification to inform industrial processes (e.g. additive manufacturing, welding, etc.).

Post-mortem TEM of an Al-7at.%Cu alloy film after DTEM solidification [J.T. McKeown et al., Acta Materialia 2014, 65].

Project 30 – Microstructural Evolution of Metallic Alloys during Rapid Solidification

Student: Chloe Johnson

Faculty: Amy Clarke

Industrial Partners: LANL, Boeing

Project Duration: Aug. 2017 – May 2021

Achievement

 Understand the relationship between rapid solidification conditions and development of metastable phases, grain sizes and morphologies, and local chemistries.

Significance and Impact

 Understand and control microstructural evolution during rapid solidification to inform industrial processes (e.g. additive manufacturing, welding, etc.).

Research Details

 Perform rapid solidification experiments on wide variety of aluminum alloys (binary, ternary, MMC) using in/ex-situ imaging techniques.

Post-mortem TEM of an Al-7at.%Cu alloy film after DTEM solidification [J.T. McKeown et al., Acta Materialia 2014, 65].

Microstructural Characterization of Welds: Comparison to Literature

Weld Direction

Light optical photograph of a laser weld done at CSM from the top of the weld.

Grain structure of laser weld from (a) a 3D grain growth model and (b) experimental EBSD data [H.L. Wei et al, Acta Mater. 2017, 122].

200 um

100 µm