

Center for Advanced **Non-Ferrous Structural Alloys** An Industry/University Cooperative Research Center

Project 33B-L: In-Situ Studies of Strain Rate Effects on Phase Transformation and Microstructural Evolution in Multi-Principal **Element Alloys**

Fall 2018 Semi-Annual Meeting Colorado School of Mines, Golden, CO October 2-4, 2018

UNIVERS

Student: John Copley (Mines) Faculty: Amy Clarke (Mines) Industrial Mentor: TBD Other Participant: Francisco Coury (UFSCAR)

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Project 33B-L: In-Situ Studies of Strain Rate Effects on Phase Transformation and Microstructural Evolution in Multi-Principal Element Alloys

Student: John Copley (Mines)Advisor(s): Amy Clarke (Mines)	Project Duration MS: September 2018 to May 2020
 <u>Problem</u>: The effects of strain rate and state and temperature on the TRIP/TWIP behavior exhibited by MPEAs are not well understood. <u>Objective</u>: Determine the relationship between temperature, strain rate and strain state effects on the evolution of deformation twins and deformation induced phase changes. 	 <u>Recent Progress</u> Initial microstructural characterization of a selected multi-principal element alloy (MPEA) indicates TRIP/TWIP behavior. In-situ diffraction measurements during thermomechanical processing (Gleeble) in Brazil have been performed by Dr. Francisco Coury.
 <u>Benefit:</u> Improved understanding of TRIP/TWIP behavior seen in other materials, alloy design for specific applications, especially blast resistance. 	

Metrics		
Description	% Complete	Status
1. Literature review	20%	•
2. Quasi-Static Testing	10%	•
3. Microstructural Characterization	2%	•
4. Dynamic Testing	0%	•
5. Multi-scale in-situ imaging and diffraction	0%	

Fall 2018 CANFSA Meeting - 10/2/2018

Industrial Relevance

- Understanding of TRIP/TWIP of MPEAs during high rate deformation
 - New strategies to design deformation mechanisms
 - Drive development of alloys for blast-resistance and performance in extreme environments
- Fundamental understanding of TRIP/TWIP
 - Applications to more commonly used Advanced High Strength Steels

MPEAs

- No definable main element
 - Equiatomic, or
 - Several (>2) components present in very high concentrations
- Almost infinite combinations
- Commonly referred to as High Entropy Alloys (HEAs) and/or Complex Concentrated Alloys (CCAs)

Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y.Yang. Materials Today, 2016, 19(6):349-362

Project Background: MPEAs

- High Entropy Alloy
 - Restrictive definition
 - $S_{config} \ge 1.5R$
 - Entropy does not correlate to properties

Multi-Principal Element

- Broader definition
- CoCrNi Family
 - Toughest known CCAs
 - Fails HEA criteria

B. Gludovatz, et al., Nature Communications, 2016, 7:10602

Project Vision

State-of-the-art, multi-scale microstructural characterization with electrons, x-rays, and protons of **TRIP/TWIP** in MPEAs for blast resistance

Figure courtesy of Dr. Amy Clarke

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Project Background: Reasons for TRIP/TWIP

- Deformation accommodated by change in local atomic stacking
- Shown to occur in some MPEAs

 CoCrNi, FeCoCrNi, FeMnCoCr, FeMnCoCrNi
- High occurrence of twins is expected (low SFE)
 - Suzuki Interaction
 - Lattice Distortion

Project Background: Effects of TWIP/TRIP

- Increased work hardening rates
 - Burgers vectors are not conserved at twin interfaces
 - High work hardening rates delay instability
- Delayed Instability
 - Increased UTS, elongation
 - Improved toughness

True strain

Figure courtesy of Dr. Kester Clarke

Recent Progress

- Initial alloy design space identified
- Evidence of TRIP/TWIP in non-equiatomic MPEA derived from FeMnCoCrNi HEA
 - Increase in HCP following cold rolling

CANFSA

ADVANCED NON-FERROUS STRUCTURAL ALLOYS

Center for

100 - CrMn

bcc

Future Work

- Investigation of multi-phase MPEAs with desirable properties
- High-throughput thermodynamic modeling to identify non-equiatomic MPEAs that will TRIP/TWIP

Center for

CANFSA

ADVANCED NON-FERROUS STRUCTURAL ALLOYS

- Initial alloy selected: Co.55Cr.05Ni.40
 - Shown to exhibit TRIP/TWIP
 - Quasi-static experimentation next

Conclusions

- In-situ studies of strain rate, strain state and temperature effects on TRIP/TWIP behavior
 - Fundamental understanding of TRIP/TWIP behavior
 - Design of deformation mechanisms through alloy to meet application criteria
 - Low SFE of MPEAs indicates possibility for TWIP/TRIP behavior even at elevated temperatures

Progress

Fall 2018 CANFSA Meeting - 10/2/2018

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Thank you very much!

John Copley jacopley@mines.edu

 Fall 2018 CANFSA Meeting – 10/2/2018
 Center Proprietary – Terms of CANFSA Membership Agreement Apply

Center for Advanced **Non-Ferrous Structural Alloys** An Industry/University Cooperative Research Center

Project 33B-L: In-Situ Studies of Strain Rate Effects on Phase Transformation and Microstructural **Evolution in Multi-Principal Element Alloys**

Student: John Copley

Faculty: Amy Clarke

Goals

Modeling of deformation behavior as it pertains to microstructural changes in MPEAs

Significance and Impact

The TRIP/TWIP behavior seen in MPEAs results in high work hardening behavior, resulting in an increased ductility, toughness and blast resistance.

Research Details

In-situ diffraction tests will show the evolution of deformation twins (a HCP phase in a FCC matrix) which can be compared to the strain rate, strain state and alloy composition to allow alloy design for specific applications

IOWA STATE UNIVERSIT

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Project 33B-L: In-Situ Studies of Strain Rate Effects on Phase Transformation and Microstructural Evolution in Multi-Principal Element Alloys

Student: John Copley

Faculty: Amy Clarke

Goals

 Modeling of deformation behavior as it pertains to microstructural changes in MPEAs

Significance and Impact

 The TRIP/TWIP behavior seen in some MPEAs results in high work hardening behavior, resulting in an increased ductility, toughness and blast resistance.

Research Details

 In-situ diffraction tests will show the evolution of deformation twins (a HCP phase in a FCC matrix) which can be compared to the strain rate, strain state and alloy composition to allow alloy design for specific applications

Project 33B-L: In-Situ Studies of Strain Rate Effects on Phase Transformation and Microstructural Evolution in Multi-Principal Element Alloys

Student: John Copley

Faculty: Amy Clarke

Project Duration: Sept. 2018 – May 2020

Program Goal

 Modeling of deformation behavior as it pertains to microstructural changes in MPEAs

Approach

 In-situ diffraction tests will show the evolution of deformation twins (a HCP phase in a FCC matrix) which can be compared to the strain rate, strain state and alloy composition to allow alloy design for specific applications

Benefits

 The TRIP/TWIP behavior seen in some MPEAs results in high work hardening behavior, resulting in an increased ductility, toughness and blast resistance.

