

Center for Advanced Non-Ferrous Structural Alloys An Industry/University Cooperative Research Center

Project 14: Measurement and Modeling of Anisotropy in Ti-6AI-4V Forgings

Fall 2018 Semi-Annual Meeting Colorado School of Mines, Golden, CO October 2-4, 2018

Student: Connor Campbell (Mines) Faculty: Terry Lowe (Mines), Kester Clarke (Mines) Industrial Mentor: Tony Yao (Weber Metals), Adam Pilchak (AFRL)

1

Project 14: Measurement and Modeling of Anisotropy in Ti-6AI-4V Forgings

 Student: Connor Campbell (Mines) Advisor(s): Terry Lowe and Kester Clarke (Mines) 	Project Duration MS: January 2016 to May 2019
 <u>Problem</u>: Microtextured regions (MTRs) in forgings of Ti-6AI-4V limit ultrasonic inspectability and can be deleterious to mechanical properties of forgings. <u>Objectives</u>: Extend understanding of how microstructural heterogeneity evolves during forging; characterize and quantify deformed samples, correlate to ultrasonic scattering. <u>Benefit</u>: Observations of heterogeneity in initial and final stages of processing may provide insight into how to optimize processes for homogeneity. 	 <u>Recent Progress</u> Sample preparation and characterization of deformed Gleeble samples Electron Backscatter Diffraction (EBSD) and Taylor factor analysis of deformed microstructures Receipt of new material containing flaws detected via ultrasonic inspection

Metrics			
Description	% Complete	Status	
1. Survey of current knowledge	90%	•	
2. Uniaxial compression of Gleeble Samples	100%	•	
3. Sample preparation and characterization of deformed microstructures		•	
4. Extraction of regions of low ultrasonic quality	0%	•	
5. Analysis of microstructural heterogeneity in regions of low ultrasonic quality	0%	•	

Industrial Relevance

- Ti-6AI-4V is widely used in many industries
- Properties of (α+ß) Ti-alloys can vary greatly
 - Dependent on α morphology and orientation
 - Necessitates rigorous inspection
- Prone to heterogeneous deformation and localized texture during thermomechanical processing (TMP)
 - Negatively impacts fatigue properties
 - Scatter ultrasonic signals used for inspection
 - Can cause false negatives (\$\$\$\$)
 - Hard to predict!

Industrial Relevance Continued

 "Understanding microstructural evolution from an average standpoint is useful, but the description of non-uniformity is more important with respect to evolution of defects that control service properties!" -S. L. Semiatin, 26 March 2018 AFRL/Industry Ti-Forging Workshop

Pictured: Shear band in a severely bent α colony, permitting deformation to flow around hard-oriented regions

T. Bieler, S.L. Semiatin: Int. J. of Plasticity, 2002, vol. 18, pp. 1165-1189.

Microtextured Regions (MTRs) Impede Ultrasonic Inspection

 MTRs have been correlated to prior α colony size, and breakdown thereof

CANFSA

ADVANCED NON-FERROUS STRUCTURAL ALLOYS

- Larger colonies, less
 breakdown = larger MTRs
- Previous work has correlated MTR size with ultrasonic inspectability
 - Larger MTRs = more noise
 - Improving inspectability requires elimination of microtextured regions
- A. Bhattacharjee, A.L. Pilchak, J.W. Foltz, et al.: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 2358–72.

 Fall 2018 CANFSA Meeting – 10/2/2018
 Center Proprietary – Terms of CANFSA Membership Agreement Apply

Project Goal

- Extend understanding of how microstructural heterogeneity develops and persists throughout TMP
 - Performed experiments to investigate α colony interactions during sub-transus compression
- Correlate localized microstructural features and heterogeneous deformation to ultrasonic scattering
 - Material with regions of higher ultrasonic noise donated by Weber Metals

Pictured: A hard-oriented α colony bends and kinks in a sample subjected to sub-transus rolling

S. Roy, S. Suwas: Acta Materialia, 2017, vol 134, pp. 283-301

Project Methodology

- Compress Ti64 samples in the (α+ß) field to varying degrees
 - Material donated by Weber Metals with large, coarse α colonies
- Characterize deformed microstructures via electron backscatter diffraction (EBSD)
 - Gain insight into origins of persistent microstructural heterogeneity
- Examine new material supplied by Weber (pictured on right)
 - Real data linking ultrasonic noise to microstructural heterogeneity
 - Material has been ß annealed, (α+ß) forged, but not heat treated

^{3.625} inches

Previous Work: Gleeble Compression

- ß-forging homogenizes as-cast microstructure
- α+ß forging introduces hot work that drives ß recrystallization
- β anneal generates finer ß grains, rapid cooling produces fine α colonies that are easily broken up
- 4. Final α+ß work to netshape creates equiaxed, fine grained α in a matrix of transformed ß

Previous Work: Gleeble Experimental Matrix

CANFSA Center for ADVANCED NON-FERROUS STRUCTURAL ALLOYS

	(900°C)	(925°C)	(950°C)
duction in Height	1650 °F	1700°F	1750°F
30%	1 sample	1 sample	1 sample
70%	2 samples	2 samples	2 samples

- Cylindrical samples with large α colony microstructures compressed at varying temperatures, then vacuum cooled
- Some deformed more uniformly than others; strain varies with position

Fall 2018 CANFSA Meeting – 10/2/2018

Non-Uniform Deformation

Sample machined from edge of billet, uniaxially compressed to 30% height reduction at 925°C and macroetched

- Strain rate = $0.01s^{-1}$
- Temperature = 925°C
- Compressed to 30% height reduction (light deformation)
- Heterogeneous deformation complicates quantifying strain

As-Received Material for macrostructure comparison

Non-uniform deformation in 70% height reduction sample

EBSD Characterization of "Heavily" Deformed Microstructures

70% avg. height reduction, T = 925°C

- When severely bent, α lamellae break into regions of weaker texture and equiaxed grain size
- Colony remnants (purple) are ideally eliminated during ß-anneal and subsequent processing

0001

EBSD Characterization of "Lightly" Deformed Microstructures

30% avg. height reduction, T = 925°C

- Colonies that are "hardoriented" w.r.t. applied load (i.e. no basal or prismatic slip) bend and kink in early stages of deformation
- Taylor factor is a good starting point for identifying these hardoriented regions
 - Easy to calculate using orientation imaging microscopy software!

Taylor Factor is Inversely Proportional to Globularization Efficiency

CANFESA Center for ADVANCED NON-FERROUS STRUCTURAL ALLOYS

- Assuming a critical resolved shear stress ratio of 0.7 : 1 : 3 (prismatic<a>:basal<a>:pyramidal<c+a>)
- Regions with high Taylor factor will be difficult to break up, resulting in nonuniform microstructure
- Provides a more rigorous test than simply identifying bent colonies
- Readily calculated with assumed deformation gradients using OIM software, therefore highly convenient!

T. Bieler, S.L. Semiatin: Int. J. of Plasticity, 2002, vol. 18, pp. 1165-1189.

Example: Using Taylor Factors to Identify Hard-Oriented α Colonies

- Region near "top" surface of sample, close to the axis of compression
- Selected because colonies with similar crystal orientation but perpendicular lamellae orientation are interacting

0001

70% avg. height reduction, T = 900°C

Example: Using Taylor Factors to Identify Hard-Oriented α Colonies

70% avg. height reduction, T = 900°C

- Region near "top" surface of sample, close to the axis of compression
- Selected because colonies with similar crystal orientation but perpendicular lamellae orientation are interacting

Calculated Taylor Factor map using OIM Software

^{70%} avg. height reduction, T = 900°C

- Deformation is assumed to be pure horizontal compression
- Red regions are harder, which is intuitive here...
- But it provides a powerful tool to identify hardoriented remnants that may cause problems!

Identifying Hard-Oriented Remnants using Taylor Factor

70% avg. height reduction, T = 900°C

 Region near midplane of sample, along axis of compression

 Appears to be broken up, fewer bent colonies observed

Identifying Hard-Oriented Remnants using Taylor Factor

70% avg. height reduction, T = 900°C

- Hard-oriented remnants of globularized colonies are now clearly visible
 - ...Assuming uniaxial compression in horizontal direction

		Total	Partition
Min	Max	Fraction	Fraction
3.23144	9.49949	0.996	0.996

Deformation Axis can be Easily Rotated

- Hard-oriented regions depend on imposed deformation
- Deformation gradient can be easily changed via TSL/OIM software

		Total	Partition
Min	Max	Fraction	Fraction
3.1772	9.49506	0.999	0.999

(photo of 950°C sample not available, scan location shown on 900°C sample for reference)

70% avg. height reduction, T = 950°C Taylor factors calculated with pure horizontal compression

Fall 2018 CANFSA Meeting - 10/2/2018

Deformation Axis can be Easily Rotated

- Hard-oriented regions depend on imposed deformation
- Deformation gradient can be easily changed via TSL/OIM software

		Total	Partition
Min	Max	Fraction	Fraction
3.2356	9.50021	0.999	0.999

(photo of 950°C sample not available, scan location shown on 900°C sample for reference)

70% avg. height reduction, T = 950°C Taylor factors calculated with pure vertical compression

Fall 2018 CANFSA Meeting – 10/2/2018

Future Work

- Complete EBSD characterization of Gleeble samples (5 currently remaining)
- Section and investigate new material:
 - 5 regions of interest:
 - 1. 30% noise, 2.05" depth
 - 2. 40% noise, 2.28" depth
 - 3. 10% noise through thickness (control)
 - 4. 10% noise through thickness (control)
 - 5. 30% noise, 2.38" depth
- Propose methods to avoid MTRs in future forgings based on findings

Gantt Chart

Fall 2018 CANFSA Meeting - 10/2/2018

Thank you very much!

Connor R. Campbell concampb@mines.edu

Center for Advanced **Non-Ferrous Structural Alloys** An Industry/University Cooperative Research Center

Project 14 – Measurement and Modeling of Anisotropy in Ti-6AI-4V Forgings

Student: Connor Campbell (Mines)

Faculty: Terry Lowe and Kester Clarke (Mines)

Industrial Partners: Weber Metals (Tony Yao), AFRL (Adam Pilchak)

Project Duration: Jan. 2016 – May 2019

Achievement

Electron Backscatter Diffraction and Taylor factor analysis of compressed Ti-6AI-4V at varying temperatures in (α +ß) field

Significance and Impact

Inspection and analysis of a part with heterogeneous microstructure will provide methods to promote homogeneity

Research Details

Data collection regarding α colony breakdown, correlation to microstructural heterogeneity that failed ultrasonic inspection

ARTH • ENERGY • ENVIRONMENT

IOWA STATE

Project 14 – Measurement and Modeling of Anisotropy in Ti-6AI-4V Forgings

Student: Connor Campbell (Mines)

Faculty: Terry Lowe and Kester Clarke (Mines)

Industrial Partners: Weber Metals (Tony Yao), AFRL (Adam Pilchak)

Project Duration: Jan. 2016 – May 2019

Achievement

Electron Backscatter Diffraction and Taylor factor analysis of compressed Ti-6AI-4V at varying temperatures in $(\alpha+\beta)$ field

Significance and Impact

Inspection and analysis of a part with heterogeneous microstructure will provide methods to promote homogeneity

Research Details

Data collection regarding α colony breakup, correlation to microstructural heterogeneity that led to rejection via nondestructive inspection

T = 925°C T = 950°C

Project 14 – Measurement and Modeling of Anisotropy in Ti-6AI-4V Forgings

Student: Connor Campbell (Mines) Faculty: Terry Lowe and Kester Clarke (Mines) Industrial Partners: Weber Metals (Tony Yao), AFRL (Adam Pilchak)

Project Duration: Jan. 2016 – May 2019

Program Goal

• Extend understanding of how microstructural heterogeneity evolves during forging; characterize and quantify deformed samples, correlate to ultrasonic scattering.

Approach

 Observe evolution of microstructural heterogeneity in early stages of processing at varying temperatures in α+ß field, correlate to heterogeneous microstructure after forging

Benefits

 Improved methods to promote homogeneity in forged products for superior ultrasonic inspectability

Breakup of heavily deformed α colony compressed at 925°C