

Center for Advanced Non-Ferrous Structural Alloys An Industry/University Cooperative Research Center

Project 32-L: Development of Cabinet-Based X-Ray Computed Tomography Methods for Studies of Microstructures and Defects in Metals

Fall 2018 Semi-Annual Meeting Colorado School of Mines, Golden, CO October 2-4, 2018

Student: C. Gus Becker (Mines)

Faculty: Amy Clarke (Mines)

Industrial Mentors: Michelle Espy (LANL, AET-6: Non-Destructive Testing)

IOWA STATE

UNIVERS

Project 32-L: Development of Cabinet-Based X-Ray Computed Tomography Methods for Studies of Microstructures and Defects in Metals

 Student: C. Gus Becker (Mines) Advisor(s): Amy Clarke (Mines) 	Project Duration PhD: August 2017 to May 2021
 <u>Problem</u>: Industrial processes of metals such as casting and additive manufacturing can benefit from static/dynamic radiography, but user facilities have technique and access limitations. <u>Objective</u>: Analyze existing radiography data and establish cabinet-based x-ray radiography capabilities at Mines for further experimentation. <u>Benefit</u>: Defect identification in AM metals and studies of solidification. 	 <u>Recent Progress</u> Passed PhD qualifying exam Uploaded radiography datasets from previous experiments to Mines server Familiarization with radiography data and experiments Scripting with ImageJ to process large datasets efficiently and produce animations for further analysis

Metrics			
Description	% Complete	Status	
1. Literature review	30%	•	
2. 6TB server established at Mines to store large radiography datasets for ease of access	100%	•	
3. Radiography datasets from AET-6, APS, and pRad uploaded to server	20%	•	
4. Image processing and analysis with ImageJ of datasets from AET-6, APS, and pRad		•	
5. Establish x-ray cabinet and perform laboratory x-ray imaging experiments	0%	•	

Industrial Relevance

- Identify defects in additively manufactured (AM) parts by non-destructive imaging
 - Qualification and certification
 - Technique limitations
- In-situ x-ray imaging of dynamic materials processes (e.g. casting) to inform model development
- Establishment of x-ray radiography and computed tomography (CT) cabinet at Mines
 - Support current projects
 - Consideration of future projects from industry

Synchrotron X-Rays at APS

- High resolution
- Small fields-of-view
- << 150 keV energies</p>
- Mostly useful for low atomic number metals
- About 60 operational beamlines
- Often over-subscribed
- Tight schedules

X-Ray Setup for Solidification Experiments

540 520 500 480 <u>છ</u> rucible 460 440 Beam window 420 400 Thermocouples 0 5 10 15 20 t (s) D. Tourret et al., Metall. Mater. Trans., (2017).

Fall 2018 CANFSA Meeting – 10/2/2018

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Solidification Study of Bi-Sn Alloys

Bi-30 at.% Sn Gibbs, P. J. et al., JOM, 66(8), 1485–1492, (2014).

Clarke et. al unpublished

High-Energy Micro-Focus X-Rays

 High voltage power source accelerates electrons from cathode to anode in an evacuated tube

- X-rays produced upon deceleration of electrons at anode
- ~200 keV x-rays, with higher energies attainable at AET-6

High-Energy X-Rays at AET-6

Unprocessed Radiographs

Unprocessed Radiographs

Unprocessed Radiographs

Solidification of Al-30 wt.% Ag

- APS setup (reason for window)
- X-ray and detector specs
 - Energy: 206 keV
 - Framerate: 5 fps
 - Duration: 20m4.4s
 - 6022 images
- Animation specs
 - Iteration: 25 images
 - Animation: 10 fps
 - Speed: 50x real

Melting & Solidification of AI-62 wt.% Ge

- APS setup
- X-ray and detector specs
 - Energy: 120 keV
 - Framerate: 5 fps
 - Duration: 23m20s
 - 7000 images
- Animation specs
 - Iteration: 25 images
 - Animation: 10 fps
 - Speed: 50x real

Melting & Solidification of AI-62 wt.% Ge

- APS setup
- X-ray and detector specs
 - Energy: 120 keV
 - Framerate: 5 fps
 - Duration: 11m16s
 - 8000 images
- Animation specs
 - Iteration: 25 images
 - Animation: 10 fps
 - Speed: 50x real

Casting of Bi-30 wt.% Sn

- X-ray and detector specs
 - Energy: 205 keV
 - Framerate: 1 fps
 - Duration: 17s
 - 17 images
- Animation specs
 - Iteration: 1 image
 - Animation: 2 fps
 - Speed: 2x real

Casting of Bi-27 wt.% Sn

- X-ray and detector specs
 - Energy: 180 keV
 - Framerate: 5 fps
 - Duration: 3m40s
 - 44 images
- Animation specs
 - Iteration: 1 image
 - Animation: 4 fps
 - Speed: 20x real

Plan Moving Forward

Create animations that can inform process models

Model Informed by Proton Radiography of Sn-27at% Bi

Plan Moving Forward

- Create animations that can inform process models
- Training to produce tomographic reconstructions of static imaged samples (solidification microstructure, AM defects)

Proton Tomography of Chelyabinsk Meteorite

Chelyabinsk Meteorite

Fall 2018 CANFSA Meeting – 10/2/2018

Micro-Computed Tomographic Reconstructions of AI-7at.% Cu

Patterson et al., Mater. Charact., (2014).

Plan Moving Forward

- Create animations that can inform process models
- Training to produce tomographic reconstructions of static imaged samples (solidification microstructure, AM defects)
- Retrofit x-ray cabinet with necessary hardware for transfer to Mines

High-Energy Micro-Focus X-Ray Cabinet

Plan Moving Forward

- Create animations that can process inform models
- Training to produce tomographic reconstructions of static imaged samples (solidification microstructure, AM defects)
- Retrofit x-ray cabinet with necessary hardware for transfer to Mines

Compare different radiography and tomography methods

Fall 2018 CANFSA Meeting - 10/2/2018

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Progress

Thank you!

C. Gus Becker <u>chbecker@mines.edu</u>

Center for Advanced **Non-Ferrous Structural Alloys** An Industry/University Cooperative Research Center

Project 32-L – Development of Cabinet-Based X-Ray Computed Tomography Methods for Studies of Microstructures and Defects in Metals

Student: C. Gus Becker

Faculty: Amy Clarke

Industrial Partners: LANL (Michelle Espy)

Project Duration: Aug. 2017 – May 2021

Achievement

Data processing and characterization of high-energy microfocus x-ray radiographs of static and dynamic metal systems

Significance and Impact

Cabinet-based x-ray radiography and computed tomography • allow for large fields-of-view, high-Z, non-destructive imaging of metals in the laboratory

Research Details

Analysis of processed x-ray image data to allow for in-depth study of solidification microstructure and defects in AM parts

Blocky crystal growth in Bi-Sn alloy

IOWA STATE

Center Proprietary – Terms of CANFSA Membership Agreement Apply

27

Project 32-L – Development of Cabinet-Based X-Ray Computed Tomography Methods for Studies of Microstructures and Defects in Metals

Student: C. Gus Becker

Faculty: Amy Clarke

Industrial Partners: LANL (Michelle Espy)

Project Duration: Aug. 2017 – May 2021

Achievement

 Data processing characterization of high-energy micro-focus x-ray radiographs of static and dynamic metal systems

Significance and Impact

 Cabinet-based x-ray radiography and computed tomography allow for large fields-of-view, high-Z, non-destructive imaging of metals in the laboratory

Research Details

 Analysis of processed x-ray image data to allow for in-depth study of solidification microstructure and defects in AM parts

Blocky crystal growth in Bi-Sn alloy

Student: C. Gus Becker Faculty: Amy Clarke

Industrial Partners: LANL (Michelle Espy)

Project Duration: Aug. 2017 – May 2021

Program Goal

 Industrial processes of metals such as casting and additive manufacturing can benefit from radiography studies performed in the laboratory

Approach

 Analyze current radiography data and establish cabinet-based x-ray radiography capabilities at Mines for further experimentation

Benefits

 Defect identification in AM metals and studies of solidification microstructure to inform casting models

Project 32-L – Development of Cabinet-Based X-Ray Computed Tomography Methods for Studies of Microstructures and Defects in Metals

