Center/Site: CANFSA		
Tracking No .: 17: Development of Advanced Nickel-Titanium- Hafnium Alloys for Tribology Applications	Phone : (614)313-3371	E-mail : seanmills@mines.edu
Center/Site Director: CANFSA/M. Kaufman/P. Collins/A. Clarke		Type: Continuing
Project Leader: Sean Mills		Proposed Budget: \$240,000
metallurgy and bearing element per	formance in Ni-Ti-Hf alloys. ansformation kinetics, which	effect of hafnium ternary alloying on the The overall benefits of hafnium alloying can reduce the residual stress and still alloys.
stress and hardness measurement a	nd a time/temperature/trans	contact fatigue characterization, residual sformation study of NiTiHf alloys. Alloy % and hafnium contents by 1 – 8 at.%.
Related work elsewhere: The NA shape memory actuation and supere		involved in NiTiHf alloy development for
How this project is different: Hig compressive/torsional toughness of optimized for tooling and wear-limite	the material. The alloying an	
is being performed by transmission	electron microscopy (TEM). L cture analysis on deformed s ing performed. Further unde is, and kinetics is of interest.	Continued rolling contact fatigue
Deliverables for the current pro development for tribology is being p dynamic loading. A paper on NiTiHf	posed year : An Acta Materia repared, in addition to a pap alloy transformations via hig	alia paper on NiTiHf alloy microstructure er on NiTiHf alloys deformed via static vs. h energy x-ray diffraction and machine- ne performance of ultra-hard NiTiHf alloys
	Station. Space-age application	ciety: Alloys will be optimized for rotary ons can have a long-term impact on many
Research areas of expertise nee strengthening mechanisms, failure a		atigue and fracture, phase transformation
Potential Member Company Ben microstructural evolution, and poten		g of NiTiHf alloys, phase transformations, system.
Progress to Date: Rolling contact f analysis, phase transformations.	atigue experimentation, mic	rostructure characterization, failure
Estimated Start Date: Fall 2015	Estimated Knov	vledge Transfer Date: Fall 2019
and its projects. It also enables stakeholde	rs to discuss and decide on the proj	lue of their leveraged investment in the center ects that provide value to their respective etings to help enable rational decision making.