Center for Advanced Non-Ferrous Structural Alloys

An Industry/University Cooperative Research Center

Project 34: In-situ Observation of Phase and Texture **Evolution Preceding Abnormal Grain Growth in Ni**based Aerospace Alloys

Spring 2018 Semi-Annual Meeting Colorado School of Mines, Golden, CO April 11-12, 2018

Student: Byron McArthur (Mines) Faculty: Amy Clarke (Mines), Kester Clarke (Mines) Industrial Mentor(s): Eric Payton, Adam Pilchak (AFRL), Kevin Severs (ATI)

ADVANCED NONFERROUS STRUCTURAL ALLOYS

Project 34 - In-situ Observation of Phase and Texture Evolution Preceding Abnormal Grain Growth in Ni-based Aerospace Alloys

 <u>Problem:</u> Abnormal grain growth in Ni-based superalloys, occurring as a result of forging parameters, significantly reduces mechanical properties. <u>Objective:</u> Determine the mechanism of abnormal grain growth in Ni-based superalloys using ex-situ and in-situ characterization techniques. <u>Benefit:</u> Improved mechanical properties for turbine disc alloys. 	 Student: Byron McArthur (Mines) Advisors: Amy Clarke, Kester Clarke (Mines) 	Project Duration PhD: Nov. 2017 to Dec. 2020
	 <u>Problem:</u> Abnormal grain growth in Ni-based superalloys, occurring as a result of forging parameters, significantly reduces mechanical properties. <u>Objective:</u> Determine the mechanism of abnormal grain growth in Ni-based superalloys using ex-situ and in-situ characterization techniques. <u>Benefit:</u> Improved mechanical properties for turbine disc alloys. 	 <u>Recent Progress</u> Preliminary literature review Initial forgings performed Beginning material characterization Recreated abnormal grain growth phenomena

Metrics			
Description		Status	
1. Literature review	50%	•	
2. Explore abnormal grain growth forging parameters for RR1000	15%	•	
3. Ex-situ and interrupted material characterization	10%	•	
4. Develop and test theory to explain abnormal grain growth phenomena		•	
5. Perform in-situ microscopy with a synchrotron source (HEDM) to demonstrate phenomena	0%	•	

Industrial Relevance

- Turbine engine discs are flight-critical components
- Forging parameters may induce abnormal grain growth (AGG)
 - Reduction in fatigue life
- Applicable to other superalloys and material systems

Material Overview

Occurrence of AGG (R'88DT) Double-Cone Compression

Strain Rate

MINES

5

Possible Contributions

- 1. γ' coherency loss
 - Dynamic recrystallization
 - Dislocation interactions
 - Orowan looping
 - Primary/secondary/tertiary γ' coherency & dissolution
- 2. Special boundaries
 - Mobile boundaries
 - Possible twinning contributions
- 3. Stored energy difference in grains
 - Local gradients in plastic deformation lead to preferential grain growth

Prior literature suggests multiple contributions

Ex-situ Experiments

- Recreate AGG in Gleeble
 - Controlled T, \dot{T} , ε , and $\dot{\varepsilon}$
- Obtain load-displacement curves
- Model values in DEFORM[®] software
 - Local strains, strain rates, temperatures
- Ex-situ characterization
 - Search for abnormal grain growth
 - Perform interrupted testing

*note: testing so far has been performed on one of two supplied material conditions

FEA Modeling - Preliminary

Input parameters of ε = 0.33 and $\dot{\varepsilon}$ =0.3. Basic material properties (to be refined)

FEA Modeling - Continued

- Local strain accumulation and strain rates greatly influenced by local flow stresses and temperatures
- Accurate modeling requires high fidelity data input
- Need more Gleeble load-displacement data

Gleeble Load–Displacement Curves

Material Characterization

Electron Backscatter Diffraction (EBSD)

- Determine grain size distribution
- Local stored energy
 - Grain Reference Orientation Deviation (GROD)
 - Indication of dislocation density within grain
- Follow TMP processing route:
 - As received
 - Forged
 - Heat treated

As-Received Material

- Isotropic material
- Small starting grain size

Center Proprietary – Terms of CANFSA Membership Agreement Apply

20 µm

Microstructure – Post Forge, Pre HT

Orientation Map

Grain Reference Orientation Deviation

1110°C forging, $\epsilon = 0.3$, $\dot{\epsilon} = 0.003/s$

Microstructure – Post Forge & HT

Orientation Map

Grain Reference Orientation Deviation

1110°C forging, $\epsilon = 0.3$, $\dot{\epsilon} = 0.003/s$, furnace heating to 1170°C for 20 minutes.

Microstructure – 1075°C Forging, 0.003 /s

Anvil-Specimen

border

Forged (Pre-HT)

Planned Interrupted Testing

- Utilize forged material at T and $\dot\epsilon$ for AGG
- Section & polish
- Perform EBSD
 - Orientation, size distribution, and GROD
- Interrupted heat treatment in dilatometer
 - Determine AGG rate & temperature
- Repeat EBSD analysis
- Continue interrupted heat treatment and EBSD

*Free surface effects may limit validity of test

Planned Gleeble Testing

- Continue exploring forging temperature and strain rate parameters that produce AGG
- Self-impingement of large grains occurs
 - Lower input strain → fewer & larger abnormal grains (?)
- Relatively low strain rate and high forging temperature appear to produce AGG
- Use values for DEFORM[®] modeling

Conditions for AGG – Gleeble Work

No AGG

Partial AGG

Extensive AGG

Role of γ ' in AGG

- The γ' acts to pin γ grain boundaries
- Various sizes form at different stages
- Forging influences the γ'
 - Coherency
 - Size
- Further analysis needed on specimens
 - TEM analysis
 - Incorporate simultaneous EDS-EBSD

Progress

Thank you! Questions?

Byron McArthur bmcarthu@mines.edu

