Project 33: In-Situ Studies of Strain Rate Effects on Phase Transformations and Microstructural Evolution in β-Titanium

- Student: Benjamin Ellyson (Mines)
- Advisor(s): Amy Clarke (Mines)

<u>Problem:</u> Uniform elongation and work hardening of titanium alloys restricts applications.

Objective: Fundamentally understand microstructural evolution in metastable β titanium alloys to develop an alloy design methodology and tailor microstructures and properties.

<u>Benefit</u>: Novel titanium alloys for blast and crash resistant applications

Project Duration

PhD: September 2017 to May 2021

Recent Progress

- Heat treatment performed to obtain β phase microstructures that exhibit TRIP/TWIP
- Compressive testing of solution treated samples partially completed
- Investigation of low-temperature, short soak time treatments is under way
- Initial thermo-mechanical testing completed in the Gleeble

Metrics		
Description	% Complete	Status
1. β solution treatments	95%	•
2. Literature review	50%	•
3. High-throughput quasi-static compression testing to β solution heat treatment	90%	•
4. Optical microstructural characterization of pre and post compression conditions	80%	•
5. EBSD/TEM microstructural characterization of pre and post compression conditions	10%	•

Center Proprietary – Terms of CANFSA Membership Agreement Apply