Center for Advanced Non-Ferrous Structural Alloys

An Industry/University Cooperative Research Center

Project #33:In-situ Studies of Strain Rate Effects on Phase Transformations and Microstructural Evolution in β-Titanium and Multi-Principle Element Alloys

Spring 2018 Semi-Annual Meeting Colorado School of Mines, Golden, CO April 11-12, 2018

Student: Benjamin Ellyson (Mines) Faculty: Amy Clarke (Mines) Industrial Mentor(s): TBD Other Participants: Yaofeng Guo (Mines)

Project 33: In-Situ Studies of Strain Rate Effects on Phase Transformations and Microstructural Evolution in β-Titanium

 Student: Benjamin Ellyson (Mines) Advisor(s): Amy Clarke (Mines) 	Project Duration PhD: September 2017 to May 2021
 <u>Problem:</u> Uniform elongation and work hardening of titanium alloys restricts applications. <u>Objective:</u> Fundamentally understand microstructural evolution in metastable β titanium alloys to develop an alloy design methodology and tailor microstructures and properties. <u>Benefit</u>: Novel titanium alloys for blast and crash resistant applications 	 <u>Recent Progress</u> Heat treatment performed to obtain β phase microstructures that exhibit TRIP/TWIP Compressive testing of solution treated samples partially completed Investigation of low-temperature, short soak time treatments is under way Initial thermo-mechanical testing completed in the Gleeble

Metrics				
Description	% Complete	Status		
1. β solution treatments	95%	•		
2. Literature review	50%	•		
3. High-throughput quasi-static compression testing to β solution heat treatment	90%	•		
4. Optical microstructural characterization of pre and post compression conditions		•		
5. EBSD/TEM microstructural characterization of pre and post compression conditions	10%	•		

2

Industrial Relevance: Development of Blast Resistant Materials for the Navy

- Cellular Materials Program
 - Multifunctional structures
 - Blast resistance
 - Thermal management

https://www.onr.navy.mil/Science-Technology/Departments/Code-33

- Propulsion
 Materials Program
 - Aircraft and marine engines

Multi-scale Studies of TRIP/TWIP during High Rate Deformation

4

Ti-25Nb-3Zr-3Mo-2Sn (wt.%) Alloy Microstructure After Deformation at 10⁻³ s⁻¹ and 0.18 True Strain

ADVANCED NONFERROUS STRUCTURAL ALLOYS

⁶ The Effect of Strain Rate (10⁻³, 10⁻¹, 10¹, 10² s⁻¹) on Deformation Mechanisms during Compression of a Ti-10V-3Fe-3AI (wt.%) Alloy

ADVANCED NONFERROUS STRUCTURAL ALLOYS

- As strain rate increases:
 - Stress-induced α" martensite (dominant) + {332}<113> β twinning + stressinduced ω phase + slip
 - Stress-induced α"
 martensite +
 {332}<113> β twinning
 + stress-induced ω
 phase + slip
 - Stress-induced α" martensite + {332}<113> β twinning (dominant) + stressinduced ω phase + slip

Ahmed, M., et al. 104 Acta Materialia (2016): 190-200

Work Hardening and Evidence of TRIP/TWIP

Brozek, C., et al. Scripta Materialia 114 (2016): 60-64

Ti-1023 Heat Treatments to Obtain Fully β Microstructures

To promote TRIP/TWIP:

- Single phase β microstructure
- Fully homogenized
- Small grain size promotes TRIP
- Large grain size promotes TWIP

Li, C., et al. *Materials Science and Engineering: A* 528.18 (2011): 5854-5860 Bhattacharjee, A., et al. *Scripta materialia* 53.2 (2005): 195-200

Solution Heat Treatment Matrix

ADVANCED NONFERROUS STRUCTURAL ALLOYS

- Hold temperature and quench rate effect on martensite fraction
- Response surface for martensite phase fraction dependence
- Water and helium to vary quench rate

Temp (°C)	Time (h)	Quench medium
900	2	Water or He
1000	2	Water or He
1100	2	Water or He
1200	2	Water or He

- Sample denomination will be as follows:
- Temperature-time-quench-condition
- 900-2h-WQ-pre
- 900-2h-WQ-post
- 900-2h-WQ-10⁻²

Preliminary Water Quench Results

Representative of 1000°C and 1100°C

COLORADO SCHOOL OF

¹³ Challenges in Obtaining Fully β Microstructures in Ti-1023

 Obtaining a fully-retained β structure in Ti-1023 requires severe quench rates and thin sections

Bhattacharjee, A., et al. Scripta materialia 53.2 (2005): 195-200
Duerig, T. W., et al. Acta Metallurgica30.12 (1982): 2161-2172
Neelakantan, S., et al. Materials Science and Technology 25.11 (2009): 1351-1358

¹⁴ 1200-2h-WQ Exhibits Larger Grain Size and Inhomogeneous Response

Less nucleation sites for martensite

Factors controlling the ability to produce fully β microstructures:

- Sample size
- Quench delay
- Quench rate
- Grain size

Sample Geometry - Compression

900-2h-HeQ-pre Exhibits Equiaxed β

1000C-2h-WQ-pre equiaxed β

1100C-2h-HeQ-pre equiaxed β

ADVANCED NONFERROUS STRUCTURAL ALLOYS

Traces of α" in the 1200-2h-HeQ-pre

COLORADO SCHOOL OF

²¹ Only a Single Grain Boundary in the 1200-2h-HeQ-pre cross-section

COLORADO SCHOOL OF

²² Optical Microstructural Characterization Summary

CANESA

ADVANCED NONFERROUS STRUCTURAL ALLOYS

Condition	Martensite Fraction	# of Grains in Φ4 mm Cross Section
900-2h-WQ	~ 15%	~50
900-2h-HeQ	~ 2%	~ 60
1000-2h-WQ	< 1%	~ 17
1000-2h-HeQ	~ 0%	~ 12
1100-2h-HeQ	~ 2%	~ 3
1200-2h-HeQ	~ 6% (only @ GB)	~ 2

Compression of 1000-2h-WQ at 10⁻⁴/s

Compression of 1000-2h-WQ at 10⁻⁴/s

Comparison of As-received and 1000-2h-WQ-10⁻⁴

25

COLORADO SCHOOL OF

Instantaneous Work Hardening Rate comparison

ADVANCED NONFERROUS STRUCTURAL ALLOYS

26

Comparison of Pre- and Post-Compression Microstructure of 1000-2h-WQ-10⁻⁴

27

Stress-Strain Behavior does not Suggest TRIP/TWIP ...

Comparison of Pre- and Post-Compression Microstructure of 1000-2h-HeQ-10⁻²

29

Comparison of Pre- and Post-Compression Microstructure of 900-2h-WQ-10⁻²

30

CANFSA Center for ADVANCED NONFERROUS STRUCTURAL ALLOYS

Comparison of Pre- and Post-Compression Microstructure of 900-2h-WQ-10⁻²

31

Comparison of Pre- and Post-Compression Microstructure of 1200-2h-HeQ-10⁻²

32

Compression Study Summary

Every heat treatment investigated shows TRIP/TWIP in post-compression microstructure

Orientation of Product Similar Within a Single Grain

34

³⁵ Multiple Variants Can Be Present in a Single Grain

Hierarchy of Deformation Product

³⁷ Work Hardening Rate and TRIP/TWIP Effect

Deformation Modes in β-Ti Alloys at Room Temperature

ADVANCED NONFERROUS STRUCTURAL ALLOYS

Twinning

38

- {112}<111> twinning
- {332}<113> twinning
- Stress induced martensite
- Stress induced ω phase

IOWA STATE

Slip

Ahmed, M., et al. 104 Acta Materialia (2016): 190-200

Two Twinning Systems

ADVANCED NONFERROUS STRUCTURAL ALLOYS

{112}<111> twinning	{332}<113> twinning
(112)[111]	(332)[113]
$(121)[\overline{1}1\overline{1}]$	(323)[13 1]
(211)[111]	(233)[311]
$(\bar{1}12)[1\bar{1}1]$	(332)[113]
$(\overline{1}21)[11\overline{1}]$	(3223)[131]
$(\overline{2}11)[\overline{1}\overline{1}\overline{1}]$	(233)[311]
$(1\overline{1}2)[\overline{1}11]$	(332)[113]
$(1\overline{2}1)[\overline{1}\overline{1}\overline{1}]$	(323)[131]
$(2\overline{1}1)[11\overline{1}]$	(233)[311]
$(11\overline{2})[\overline{1}\overline{1}\overline{1}]$	(332)[113]
(121)[111]	(323)[131]
$(21\overline{1})[1\overline{1}1]$	(233)[311]

Polarization of twinning and operative twinning

Center Proprietary – Terms of CANFSA Membership Agreement Apply

MINES

⁴⁰ Schmid Factor of Two Twinning Systems

⁴¹ Coupled {332} Twinning and Stress Induced Martensitic Transformation

b

Misorientation

- {112} twinning: **∑**3, **60° <111>**
- {332} twinning: **∑11**, **50.57° <110>**

Lai, M.J., et al. 111 Acta Materialia (2016): 173-186

IOWA STATE

COLORADO SCHOOL OF

4 um

Center Proprietary – Terms of CANFSA Membership Agreement Apply

4 µm

a"_

B-twin

a"-

B-twin-

Ongoing EBSD Characterization

- Post-mortem EBSD of deformed samples
- In situ EBSD during deformation
- Understanding the coupling of mechanisms in Ti-1023 will inform future Ti-alloy experiments

Summary

- Compression study nearly complete:
 - Fully equiaxed β microstructure with little/no martensite
 - Evidence of TRIP/TWIP behavior
- EBSD and TEM microstructural characterization is underway
- Tensile testing of Ti-1023 based upon compression testing results
- Ti-15Mo from ATI available

Gantt Chart for Project 33

Progress

Benjamin Ellyson <u>bellyson@mines.edu</u> Yaofeng Guo guoyaofeng@mines.edu

[1] Brozek, C., et al. "A β-titanium alloy with extra high strain-hardening rate: design and mechanical properties." Scripta Materialia 114 (2016): 60-64.

[2] Li, C., et al. "Influence of α morphology and volume fraction on the stress-induced martensitic transformation in Ti–10V–2Fe–3AI." *Materials Science and Engineering: A* 528.18 (2011): 5854-5860.

[3] Bhattacharjee, A., et al. "Effect of β grain size on stress induced martensitic transformation in β solution treated Ti–10V–2Fe–3Al alloy." *Scripta materialia* 53.2 (2005): 195-200.

[4] Duerig, T. W., et al. "Formation and reversion of stress induced martensite in Ti-10V-2Fe-3Al." Acta Metallurgica30.12 (1982): 2161-2172.

[5] Neelakantan, S., et al. "Plasticity induced transformation in a metastable β Ti-1023 alloy by controlled heat treatments." Materials Science and Technology 25.11 (2009): 1351-1358.

[6] Sun, F., et al. "Investigation of early stage deformation mechanisms in a metastable b titanium alloy showing combined twinning-induced plasticity and transformation-induced plasticity effects." 61 Acta Materialia (2013): 6406-6417.

[7] Ahmed, M., et al. "Strain rate dependence of deformation-induced transformation and twinning in a metastable titanium alloy." 104 Acta Materialia (2016): 190-200.

[8] Lai, M.J., et al. "On the mechanism of {332} twinning in metastable β titanium alloys." 111 Acta Materialia (2016): 173-186.

