Project 31: Accumulative Roll Bonding of Al and Ti Sheets Toward Low Temperature Superplasticity

- Student: Brady McBride (Mines)
- Advisor(s): Kester Clarke (Mines)

<u>Problem:</u> Superplastic forming requires high temperatures and very low strain rates.

Objective: Develop an in-depth understanding of how accumulative roll bonding affects temperature dependent strength and superplastic properties of Al and Ti alloys.

<u>Benefit:</u> Low temperature superplasticity could result in reduced cost and cycle time due to reduced deformation temperatures and increased strain rates.

Project Duration

PhD: September 2017 to May 2021

Recent Progress

- Literature review of ARB processes pertaining to aluminum alloys
- Development of ARB surface preparation procedures
- Two successful roll bonding cycles of Al 6061 with adequate bonding

Metrics		
Description	% Complete	Status
1. Literature review	15	•
2. ARB process development	50	•
3. ARB of select alloys (Al 2024, Al 5083)	0	•
4. Mechanical & microstructural characterization	0	•
5. Process refinement / alloy selection for optimized superplasticity	0	•

Center Proprietary – Terms of CANFSA Membership Agreement Apply