Center for Advanced Non-Ferrous Structural Alloys

An Industry/University Cooperative Research Center

Project 31: Accumulative Roll Bonding of Al and Ti Sheets Toward Low Temperature Superplasticity

Spring 2018 Semi-Annual Meeting Colorado School of Mines, Golden, CO April 11-12, 2018

Student: Brady McBride (Mines) Faculty: Dr. Kester Clarke (Mines) Industrial Mentor(s): Ravi Verma (Boeing), John Carpenter (LANL)

Project 31: Accumulative Roll Bonding of Al and Ti Sheets Toward Low Temperature Superplasticity

 Student: Brady McBride (Mines) Advisor(s): Kester Clarke (Mines) 	Project Duration PhD: September 2017 to May 2021
 <u>Problem:</u> Superplastic forming requires high temperatures and very low strain rates. <u>Objective:</u> Develop an in-depth understanding of how accumulative roll bonding affects temperature dependent strength and superplastic properties of Al and Ti alloys. <u>Benefit:</u> Low temperature superplasticity could result in reduced cost and cycle time due to reduced deformation temperatures and increased strain rates. 	 <u>Recent Progress</u> Literature review of ARB processes pertaining to aluminum alloys Development of ARB surface preparation procedures Two successful roll bonding cycles of Al 6061 with adequate bonding

Metrics			
Description	% Complete	Status	
1. Literature review	15	•	
2. ARB process development	50	•	
3. ARB of select alloys (AI 2024, AI 5083)	0	•	
4. Mechanical & microstructural characterization		•	
5. Process refinement / alloy selection for optimized superplasticity		•	

2

Accumulative Roll Bonding (ARB)

Fig. 1. Typical accumulative roll bonding procedures [1].

ARB Cycles (n)	# of Layers (N)	Layer Thickness (µm)
1	2	500
2	4	250
3	8	125
4	16	62.5
5	32	31.2
6	64	15.6

Fig. 2. Individual layers present in IF steel after 5 ARB cycles Typical accumulative roll bonding procedures [2].

Industrial Relevance

Enhanced properties:

- low temperature superplasticity
- Hall-Petch strengthening

Fig. 3. Observed superplasticity in Al 5083 [3].

Applications:

- superplastic forming
- high strength sheet components

Benefits:

- reduced cycle time
- reduced die wear

Fig. 4. Superplastic forming process [4].

Superplastic Effects

Potential Materials

Aluminum Alloys

Al 2024 Al 5083

Titanium Alloys CP Ti Ti-6Al-4V

Fig. 6. 100,000 lb Fenn 2-high rolling mill at CSM.

7

Fig. 7. Al 6061 sample subject to 1 ARB cycle.

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Initial Dimensions: (2x) 0.063 in x 1 in

Final Dimensions: (1x) 0.068 in x 1 in

46 % 1-pass reduction

Fig. 7. Al 6061 sample subject to 1 ARB cycle.

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Initial Dimensions: (2x) 0.063 in x 1 in

Final Dimensions: (1x) 0.068 in x 1 in

46 % 1-pass reduction

Fig. 8. (a,b) Optical micrographs of longitudinal cross section Al 6061 subject to 1 ARB cycle showing degree of bonding. (b) shows lack of bonding or inclusion along interface.

Adequate bonding; limited inclusions

Fig. 7. Al 6061 sample subject to 1 ARB cycle.

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Initial Dimensions: (2x) 0.063 in x 1 in

Final Dimensions: (1x) 0.068 in x 1 in

46 % 1-pass reduction

Initial Dimensions: (2x) 0.068 in x 1 in

Final Dimensions: (1x) 0.069 in x 1 in

49 % 1-pass reduction

Fig. 9. Al 6061 sample subject to 2 ARB cycles.

Initial Dimensions: (2x) 0.068 in x 1 in

Final Dimensions: (1x) 0.069 in x 1 in

49 % 1-pass reduction

Fig. 9. Al 6061 sample subject to 2 ARB cycles.

(a)

Fig. 10. (a,b) Optical micrographs of longitudinal cross section Al 6061 subject to 2 ARB cycles showing degree of bonding. (b) shows lack of bonding near trailing edge from first bonding cycle.

Change of interface character near trailing edge

Current Issues in Research

Lateral Spreading

- spot welds
- wire binding
- edge guides

Fig. 11. Wire-binding preparation before ARB [8].

Edge Cracks

- wider samples
- "warm" rolling

Fig. 12. Severe splitting of Al 5083 after 2 ARB cycles [9].

Processing Limitations

- 8" wide rolls 5.25" roll diameter
- Fixed 50 SPM speed
- 100,000 lb capacity
- No edge control

Fig. 13. 100,000 lb Fenn 2-high rolling mill at CSM.

Edge Guides

Fig. 14. Current infeed table of Fenn 2-high rolling mill at CSM.

Fig. 15. Edge guides used on rolling mill for ARB studies at Osaka University [8].

Accomplishments

Progress to Date

Development of surface preparation methods

- acetone degrease
- 2,500 RPM wire brushing

Adequate bonding in two successful ARB cycles

Next Steps

- Characterize bonding interface
- Examine microstructural development
- Characterize resulting tensile properties

Gantt Chart

Apr-18 Jun-18 Sep-18 Dec-18 Mar-19 Jun-19 Sep-19 Dec-19 Mar-20 Jun-20 Sep-20 Dec-20 Mar-21

ADVANCED NONFERROUS STRUCTURAL ALLOYS

Thank you!

Brady McBride bmcbride@mines.edu

References

- [1] N. Tsuji, K. Shiotsuki, and Y. Saito, "Superplasticity of Ultra-Fine Grained Al-Mg Alloy by ARB," *Materials Transactions*, vol. 40, no. 8, pp. 765–771, 1999.
- [2] Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai, "Novel ultra-high straining process for bulk materials—development of the accumulative roll-bonding (ARB) process," *Acta Materialia*, vol. 47, no. 2, pp. 579–583, 1999.
- [3] F. K. A. Farha and M. K. Khraisheh, "An integrated approach to the Superplastic Forming of lightweight alloys: towards sustainable manufacturing," International Journal of Sustainable Manufacturing, vol. 1, no. 1/2, p. 18, 2008.
- [4] R. M. Cleveland, A. K. Ghosh, and J. R. Bradley, "Comparison of superplastic behavior in two 5083 aluminum alloys," Materials Science and Engineering A, vol. 351, no. 1-2, pp. 228–236, 2003.
- [5] Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, and R. Hong, "Ultra-fine grained bulk aluminum produced by accumulative rollbonding process," *Scripta Materialia*, vol. 40, no. 7, pp. 795–800, 1999.
- [6] H. Sheikh, and E. Paimozd "Effect of Hot Accumulative Roll Bonding Process on the Mechanical Properties of AA5083," *Open Journal of Metal*, vol. 1, pp. 12–15, 2011.
- [7] H. Sheikh, "Role of shear banding on the microtexture of an Al-Mg alloy processed by hot/high strain rate accumulative roll bonding," *Scripta Materialia*, vol. 64, no. 6, pp. 556–559, 2011.
- [8] N. Tusji, ARB Movies. 2008 [Online]. Available: www.tsujilab.mtl.kyoto-u.ac.jp/01TsujiLab/Library/Movies/ARB_movies.html
- [9] N. Tsuji, "Production of Bulk Nanostructured Metals by Accumulative Roll Bonding (ARB) Process," in *Severe Plastic Deformation: Toward Bulk Production of Nanostructured Materials*, B. Altan, Nova Science, 2006, pp. 545-565.
- [10] D. Terada, S. Inoue, and N. Tsuji, "Microstructure and mechanical properties of commercial purity titanium severely deformed by ARB process," *Journal of Materials Science*, vol. 42, no. 5, pp. 1673–1681, 2007.

Strengthening Effects

Fig. 17. Stress-strain curves of ultrafine grained (0.28μ m) 5083 processed by ARB compared to coarse grain (10μ m) 5083 [1].

Project 31 - Accumulative Roll Bonding of Al and Ti Sheets Toward Low Temperature Superplasticity

Graduate Student – Brady McBride (CSM) Faculty/Advisors – Kester Clarke (CSM) Industrial Mentors – Ravi Verma (Boeing) & John Carpenter (LANL)

Program Goal

Investigate enhanced superplasticity of ultra fine grained materials produced by accumulative roll bonding

Approach

Develop a process for accumulative roll bonding and determine microstructural mechanisms related to superplasticity

Benefits

Improved superplastic formability by means of reduced temperature and increased forming strain rates with reduce operating costs and prolong die life

Bonding interfaces developed in Al 6061 after 2 roll bonding cycles

> Project Duration August 2017 to May 2021

