Project 30: Microstructural Evolution of Alloys During Rapid Solidification

- Student: Chloe Johnson (Mines)
- Advisor(s): Amy Clarke (Mines)

<u>Problem:</u> Rapid solidification results in novel assolidified microstructures with lesser known effects on subsequent solid state phase transformations

<u>Objective:</u> Understand the relationship of as-solidified microstructures to subsequent solid-state transformations and final microstructures and properties of alloys

<u>Benefit:</u> Inform models, leading to better predictions of microstructural evolution achieved by specific processing conditions

Project Duration

PhD: August 2017 to May 2021

Recent Progress

- Literature review
- Alloy selection
- Sample acquisition
- Advanced Photon Source (APS) at Argonne National Laboratory user proposal submitted
- Dynamic Transmission Electron Microscopy (DTEM) collaboration with Lawrence Livermore National Laboratory

Metrics		
Description	% Complete	Status
1. Literature review	20%	•
2. Alloy selection	100%	•
2. Characterization (ex/in-situ) of samples solidified under rapid and conventional conditions	10%	•
3. In-situ solid state phase transformation experiments	0%	•
4. Evaluation of precipitation strengthening via micropillar compression	0%	•

Center Proprietary – Terms of CANFSA Membership Agreement Apply