Center for Advanced Non-Ferrous Structural Alloys

An Industry/University Cooperative Research Center

Project 30: Microstructural Evolution of Metallic Alloys During Rapid Solidification (Leveraged)

Spring 2018 Semi-Annual Meeting Colorado School of Mines, Golden, CO April 11-12, 2018

Student: Chloe Johnson (CSM) Faculty: Dr. Amy Clarke (CSM) Industrial Mentor(s): TBD

Other Participants : Adam Stokes (CSM), Yaofeng Guo (CSM)

Project 30: Microstructural Evolution of Alloys During Rapid Solidification Dashboard

 Student: Chloe Johnson (Mines) Advisor(s): Amy Clarke (Mines) 	Project Duration PhD: August 2017 to May 2021
 <u>Problem:</u> Rapid solidification results in novel assolidified microstructures with lesser known effects on subsequent solid state phase transformations <u>Objective:</u> Understand the relationship of as-solidified microstructures to subsequent solid-state transformations and final microstructures and properties of alloys <u>Benefit:</u> Inform models, leading to better predictions of microstructural evolution achieved by specific processing conditions 	 <u>Recent Progress</u> Literature review Alloy selection Sample acquisition Advanced Photon Source (APS) at Argonne National Laboratory user proposal submitted Dynamic Transmission Electron Microscopy (DTEM) collaboration with Lawrence Livermore National Laboratory

Metrics			
Description	% Complete	Status	
1. Literature review	20%	•	
2. Alloy selection	100%	•	
2. Characterization (ex/in-situ) of samples solidified under rapid and conventional conditions	10%	•	
3. In-situ solid state phase transformation experiments	0%	•	
4. Evaluation of precipitation strengthening via micropillar compression	0%	•	

Processing-Microstructure-Property Relationships

3

Industrial Relevance

Montage of conventional BF TEM images showing three distinct morphological zones in a resolidified Al-Cu alloy film.

J.T. McKeown *et al.*, "In situ transmission electron microscopy of crystal growth-mode transitions during rapid solidification of a hypoeutectic Al-Cu alloy", *Acta Materialia* **65**, 56–68 (2014).

3D-printed TiCx preforms with various geometries

A. Levy, A.Miriyev, A. Elliott, S.S. Babu, N. Frage, "Additive manufacturing of complex-shaped graded TiC/steel composites", *Materials and Design* **118**, 198–203 (2017).

Solid-Liquid Transformations: Far from Equilibrium in the DTEM

Growth velocity

DTEM imaging during rapid solidification in (a) Al–4Cu and (b) Al–3Si alloy thin films after pulsed-laser melting [J.T. Mckeown et al., JOM 2016, 3:68].

IOWA STATE UNIVERSITY

5

Solidification and Precipitation in Al-**Mn** Alloys

< 5 wt% Mn

Proposed Experiments

CAN

ADVANCED NONFERROUS STRUCTURAL ALLOYS

 Phase Transition, Scale, Technique, and Synthesis Pathways that will be Explored for Different Aluminum Alloys

 Phase Transition
 Scale

 Technique
 Synthesis Type

 Alloy(s)

 Solid-Liquid
 Film 2D/Small

Solid-Liquid	Film, 2D/Small	DTEM @ LLNL	Far from Equilibrium	Al-Cu, Al-Ag
Solid-Liquid	Bulk, Small	2D & 4D X-ray Imaging @ APS	Near -> Far from Equilibrium	Al-Cu, Al-Ag
Solid-Solid	Film, 2D/Small	TEM/Hot Stage @ Mines, TEM/HRTEM/Hot Stage @ CINT-SNL	Near -> Far from Equilibrium	Al-Cu, Al-Ag, Al- Cu-Ag
Solid-Solid	Bulk, Small	4D TXM @ APS	Near Equilibrium	Al-Cu, Al-Ag, Al- Cu-Ag
Solid-Solid	Bulk, Small	APT @ Mines	Near -> Far from Equilibrium	Al-Cu, Al-Ag, Al- Cu-Ag

Aluminum Alloy Systems

Use as model systems for studying rapid solidification and solid-state phase transformations (e.g. precipitation)

Consider

- − Al-Cu: GP zones → θ " → θ ' → θ
- Al-Ag: GP zones $\rightarrow \gamma' \rightarrow \gamma$
- Al-Cu-Ag: Combination

S.P. Ringer and K. Hono, "Microstructural evolution and age hardening in aluminium alloys: atom probe field-ion microscopy and transmission electron microscopy studies", *Materials Characterization*, **44**, 101–131 (2000).

Al-rich corner of the Al–Cu phase diagram showing the metastable solvus boundaries for GP zones, θ " and θ ', together with the equilibrium solvus line for the θ phase.

Alloy Selection: Al-Cu, Al-Ag, Al-Cu-Ag

Aluminum Alloy Compositions			
Alloy	Sample 1 wt. %	Sample 2 wt. %	Sample 3 wt. %
	(at. %)	(at. %)	(at. %)
Al-Cu	Al-1.9 Cu	Al-10 Cu	Al-20 Cu
	(Al-0.8 Cu)	(Al-4.5 Cu)	(Al-9.6 Cu)
Al-Ag	Al-3 Ag	Al-14.3 Ag	Al-30 Ag
	(Al-0.8 Ag)	(Al-4.5 Ag)	(Al-9.6 Ag)
Al-Cu-Ag	Al-1.9 Cu-3 Ag	Al-10 Cu-14.3 Ag	Al-20 Cu-30 Ag
	(Al-0.8 Cu-0.8 Ag)	(Al-4.5 Cu-4.5 Ag)	(Al-9.6 Cu-9.6 Ag)

Alloy Selection: CALPHAD Phase Verification

¹¹ Alloy Selection: CALPHAD Phase Verification (AI-Cu-Ag)

FCC_Al (α)	
HCP_AlAg ₂ (γ)	
$Al_2Cu(\Theta)$	
Liquid	

¹² Hot-Stage DTEM Rapid Solidification Studies

AM Solidification Studies at APS

IOWA STATE

COLORADO SCHOOL OF

Right: Synchrotron x-ray imaging of a Ti-6Al-4V plate sample in laser melting processes and solidification rate measurement s [C. Zhao et al., Scientific Reports 2017, 7:3602].

ADVANCED NONFERROUS STRUCTURAL ALLOYS

¹⁴ In-Situ Imaging of AI-Ag and Solid State Phase Transformations

CANES

ADVANCED NONFERROUS STRUCTURAL ALLOYS

High-energy x-ray imaging, highlighting Al-Ag solidification dynamics during controlled directional solidification

63.2 s

IOWA STATE

54.8 5

MINES

GP zones and γ' precipitation in an Al-Ag alloy imaged

with advanced

electron

microscopy

techniques

4-D X-ray Microscopy of Precipitation

- (f) 3D nondestructive microstructural characterization using TXM:
- (g) Nucleation and growth of θ from θ ' to θ ' intersection.
- (h) Varying transformation of different θ' precipitates.

C.S. Kaira *et al.*, "Probing novel microstructural evolution mechanisms in aluminum alloys using 4D nanoscale characterization", *Advanced Materials* **29**, (2017).

Micropillar Compression Testing

(a-d) Deformation of Sibearing inclusion (Mg2Si) pillars with Al at the base and (e) stress-strain curves showing the decrease in stress values of Si-bearing inclusions due to presence of the Al matrix

S.S. Singh, E. Guo, H. Xie, N. Chawla, "Mechanical properties of intermetallic inclusions in Al 7075 alloys by micropillar compression", *Intermetallics* **62**, 69–75 (2015).

¹⁷ Preparation for APS: Preliminary Rapid Solidification Studies

Laser welding set up at Mines.

Progress

Project 30 – Microstructural Evolution of Metallic Alloys During Rapid Solidification

Graduate Student – Chloe Johnson (CSM) Faculty/Advisors – Amy Clarke (CSM) Industrial Mentors – TBD

Program Goal

Understand the effect of rapid solidification on the as-solidified microstructure and subsequent solid-state phase transformations.

Approach

Use in-situ and post mortem imaging techniques to capture and characterize the mechanisms controlling microstructural development during far from equilibrium and equilibrium solidification.

Benefits

In-situ characterization of solid-liquid and solidstate phase transformations will give a full understanding of the solidification pathway and help inform models.

TEM image of a rapidly solidified Al-Cu alloy

Project Duration

Ph.D. August 2017 – May 2021

Thank you very much!

Chloe Johnson <u>chloejohnson@mines.edu</u>

