Project 29: Identification of Deformation Mechanisms of Thermally Stable Cast Al-Cu Alloys via Neutron Diffraction

Student: Brian Milligan (Mines)

Advisor(s): Amy Clarke (Mines), Amit Shyam (ORNL)

Project Duration

PhD: August 2017 to May 2021

Problem

Thermally stable cast Al-Cu alloys developed at ORNL require characterization of mechanical properties.

Objective

Apply in-situ neutron diffraction, SEM, TEM, and traditional mechanical testing to better understand the mechanical behavior of these alloys.

Benefit

Improvement of properties of these alloys, as well as furthering scientific understanding of precipitation strengthened Al alloys.

Recent Progress

- Paper on creep properties of Al alloys at 300 and 350
 C in preparation.
- Paper on room temperature deformation mechanisms in 206 Al in preparation.
- Identified deformation mechanisms in 206 Al under various aging conditions
- Quantification of precipitate cutting underway.
- User proposal submitted to APS at Argonne National Laboratory to study precipitation and growth kinetics using TXM.

Metrics		
Description	% Complete	Status
1. Literature review	80%	•
2. In situ neutron diffraction at the SNS, and creep testing at CSM and ORNL	80%	•
3. Microstructural characterization pre- and post- creep and tension	60%	•
4. Analysis of neutron diffraction data	80%	•
5. Development of models for grain orientation-dependent tensile and creep properties	40%	•

Center Proprietary – Terms of CANFSA Membership Agreement Apply