Center for Advanced Non-Ferrous Structural Alloys

An Industry/University Cooperative Research Center

Project 28: Laboratory Testing to Identify Permanent PVD Coatings to Minimize Lubricant Use During Forging

Spring 2018 Semi-Annual Meeting Colorado School of Mines, Golden, CO April 11-12, 2018

Student: Trevor Kehe (CSM) Faculty: Kester Clarke & Steve Midson (CSM) Industrial Mentor: Rob Mayer (Queen City Forging)

1

Project 28: Laboratory Testing to Identify Permanent PVD Coatings to Minimize Lubricant Use During Forging

 Student: Trevor Kehe (Mines) Advisors: Kester Clarke, Steve Midson (Mines) 	Project Duration September 2017 to August 2018
 <u>Problem:</u> Lubricants are applied to forging dies to minimize friction and optimize formability, but lubricants can decrease quality of forgings. <u>Objective:</u> Reduce the use of lubricants by applying high-lubricity permanent thin-film PVD coatings to the forging tool. <u>Benefit:</u> Reduce use of costly lubricants, improved cycle rate, improved quality of forgings and cleaner forging plants. 	 <u>Recent Progress</u> One-year project has been funded by FIERF Literature review of coatings used in forging and metals fabrication has been completed Coatings for initial trials have been identified Forging tool for laboratory forging test has been designed and fabrication should be complete by early May

Metrics			
Description		Status	
1. Literature review	100%	•	
2. Design and fabricate tooling for laboratory forging test	80%	•	
3. Produce coated die samples and set up laboratory testing procedure		•	
4. Perform plant trial of best PVD coating identified during laboratory testing		•	
5. Reporting	0%	•	

Project Goals

Utilize permanent PVD thin-film coatings

- Applied to forging dies
- To minimize use of die lubricants

Goals

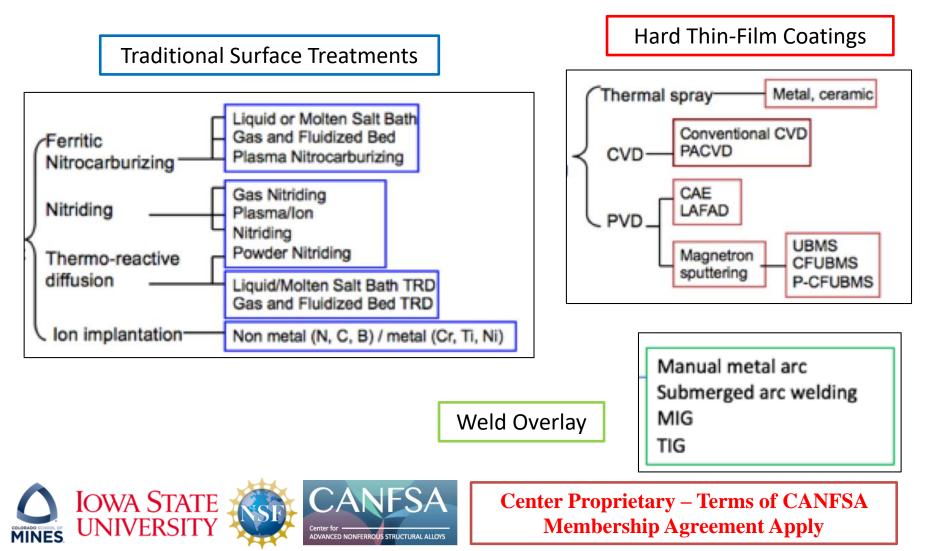
- Reduce use of costly lubricants
- Improve die life
- Improve cycle rate
- Improve quality of forgings
- Reduce lubricant over-spray in facility

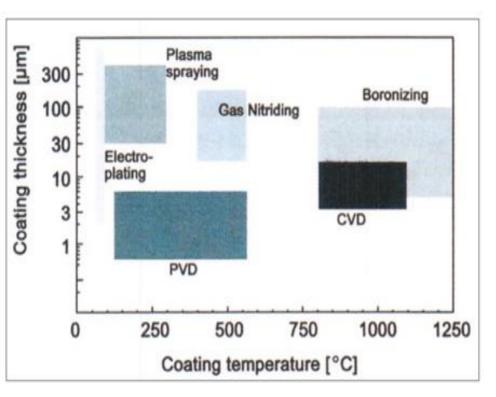
Approach Utilized for This Project

- Leverage the recent CSM "Lube Free" coating project
 Apply similar coating technologies to forging dies
- Develop a flexible testing methodology
 - Quickly evaluate relative friction coefficients of PVD surface coatings during aluminum forging
- Working toward developments that will support higher temperature and stress forging operations for other materials
 - Titanium alloys and steels
- One year project
 - Funded by Forging Industry Educational and Research Foundation (FIERF)

Project Tasks

- 1. Perform literature review of coatings used in forging and metals fabrication
- 2. Design and fabricate tooling for laboratory forging test
- 3. Procure coated die test samples and set up laboratory testing procedure
- 4. Perform plant trial of best PVD coating identified during laboratory testing
- 5. Reporting


Task 1: Review of Literature



Surface Engineering Technologies

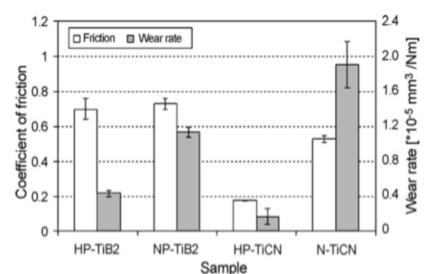
• Surface engineering can be divided into three classes

Hard Thin-Film Coatings for Forging Dies

- Coating thickness is typically <10 μm
 - Thicker coatings will spall
- Substrate temperature needs to be less than 550°C (1,000°F) during application
 - To avoid over-tempering of hardened tool-steel substrate
- PVD coating meets these criteria

IOWA STATE UNIVERSITY

8


CANFSA Center for ADVANCED NONFERROUS STRUCTURAL ALLOYS

Coatings Currently Used on Forging Dies

- PVD coatings are not commonly used on forging dies
 - More common with die casting dies
- Most of the studies have focused on wear resistance and extending die life
 - Not on improving lubricity
- Coatings examined include CrN, TiN, TiC, TiCN, TiAlCN, TiC, AlCrN, TiAlN
- Data from Leskovsek et al. showed that TiCN did reduce coefficient of friction

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Source: Leskovsek et al., Wear, 2009

Current Lubricants and Potential Coatings

Mechanism	Material Examples	Temp. Range
Traditional liquid lubricants	Oils and greases	<~250°C
Atomic structures that can easily shear	MoS ₂ , graphite	<300°C
PVD hard coatings (can contain softer lubricating phases)	Diamond like carbon, TiCN, CrN/SiC, i-Kote	<500-800°C depending upon coating
Soft metals within hard coatings that diffuse to contact surfaces	Ag, Au, Cu encapsulated in TiN, CrN, VN, YSZ, CrAlN	300 – 500°C
Lubricious oxides	V ₂ O ₅ , MoO ₃	500 – 1000°C

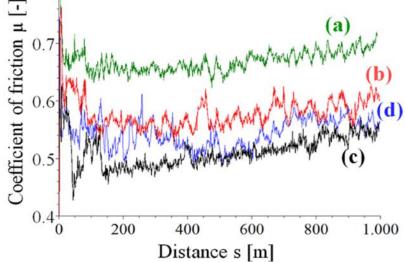
CANESA

Center for ADVANCED NONFERROUS STRUCTURAL ALLOYS

Source: Adapted from Voevodin et al., Surf. & Coat. Tech., 2014

10

MoS₂-Containing Coatings


- MoS₂ is an excellent lubricant
 Due to its layered structure
- MoS₂ can be directly deposited
 - Deposited structures are very soft
 - Easily detach from substrate
- Mos₂ has been deposited as part of a harder coating
 - Titanium

IOWA STATE

- AlCrN
 - Coefficient of friction values were reduced

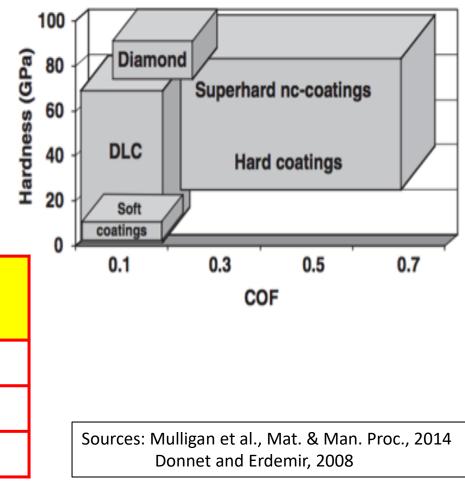
ADVANCED NONFERROUS STRUCTURAL ALLOYS

res are very

(b), (c) & (d) utilizing $(Cr_{1-x}Al_x)N/Mo_yS_{7}$ -

(a) Uncoated substrate

type coatings

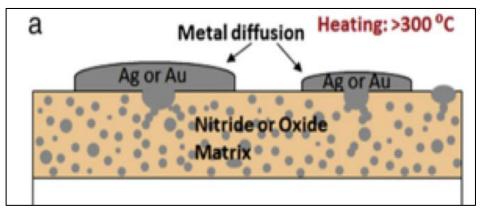

Source: Bobzin et al., Ad. Eng. Mat., 2016

Hard Coatings

- Several hard coatings have the potential for improving lubricity
 - Diamond like carbon (DLC)
 - CrN/SiC
 - TiCN

Coating	Coefficient of Friction
CrN	0.28
CrN/DLC	0.07
CrN/SiC	0.07

ADVANCED NONFERROUS STRUCTURAL ALLOYS



Noble Metal Solid Lubricants

Noble metals are dispersed in hard coatings

- Ag in CrN
- Ag in CrAlN
- Ag in TiC
- Noble metal diffuses to surface

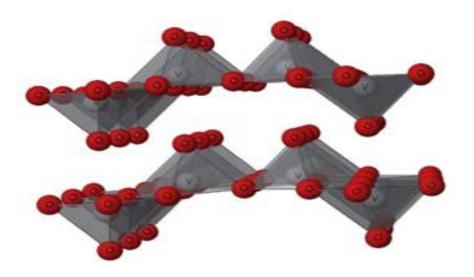
 Provide lubricity at temperature greater than 300°C

Source: Voevodin et al., Surf. & Coat. Tech., 2014

CANFSA Center for ADVANCED NONFERROUS STRUCTURAL ALLOYS

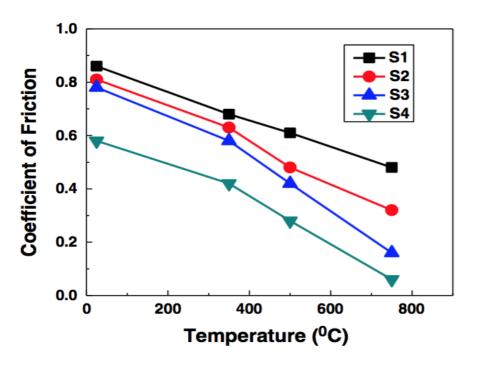
Highly Lubricious Oxide Coatings

- For applications at high temperatures
 - Unreasonable to expect materials to resist oxidation for long periods


ADVANCED NONFERROUS STRUCTURAL ALLOYS

- Utilize oxide materials
 - Having low interfacial shear strengths
 - $-V_{2}O_{5}$
 - $-MoO_3$

- V atoms are represented as grey balls
- O atoms as red balls

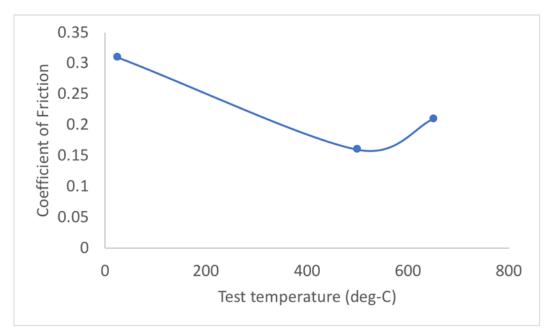


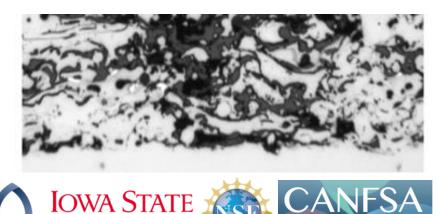
Source: Mulligan et al., Surf. & Coat. Tech., 2010

Highly Lubricious Oxide Coatings

- Ag-Ta-O
 - Sputtered from Ta and Ag targets in reactive oxygen atmosphere
- Exhibit extremely low coefficient of friction at 600 700°C

CoF for four silver tantalate coatings


Source: Stone et al., Surf. & Coat. Tech., 2013



NASA Plasma Sprayed Coatings

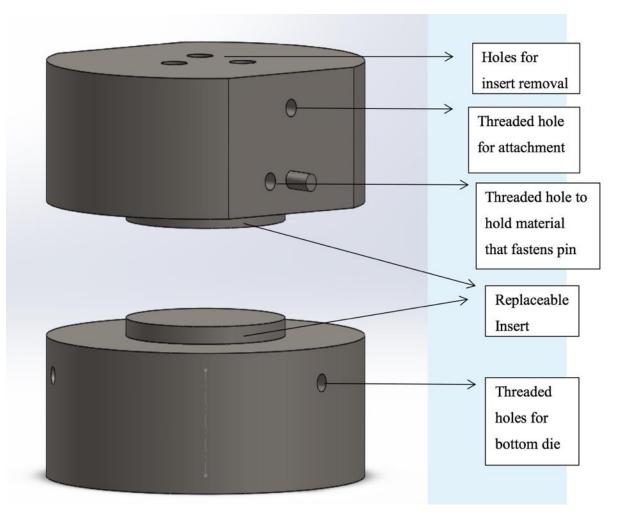
- PS400
 - Nickel-molybdenum binder for strength
 - Silver and barium– calcium fluoride are added for lubrication
- Has layered microstructure

ADVANCED NONFERROUS STRUCTURAL ALLOYS

Source: DellaCorte & Edmonds, NASA Report, 2009

Coatings Planning to Evaluate

Type of Coating	Specifics	Supplier	Temperature
Single-layer hard coatings	TiCN	Tribologix, Dayton, Ionbond	<400°C
	Ti-MoS _{2 (MOST)}	Teer in UK, Ionbond	<350°C
	AlCrN-MoS ₂	Tribologix	
Multi-layer hard	TiCN-TiMoS ₂	Teer	
coatings	CrN-DLC	Phygen	<300 °C
	CrN-SiC	Phygen	
	i-Kote	Tribologix	350°C
Noble Metals	Hard coating plus noble metal	Voevodin, Scharf & Samir at UNT	<500°C
Highly lubricious oxide		We would have to produce our own coating	
Plasma Sprayed	PS400	NASA	
Laser Textured	Laser texture a TiCN coating	Tribologix/CSM	



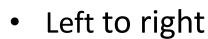
Task 2: Tooling for Laboratory Forging Test

Tooling

- Currently fabricating tooling
 - Six sets of replaceable inserts
- A variety of coatings will be placed on each set of replaceable inserts

CANFSA Center for ADVANCED NONFERROUS STRUCTURAL ALLOYS

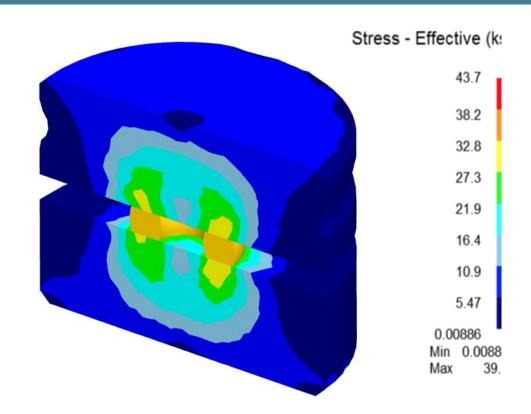
Effect of Friction on Shape of Ring


- Aluminum rings will be forged to evaluated coefficient of friction
 - Between ring and coated inserts

6061 aluminum rings

ADVANCED NONFERROUS STRUCTURAL ALLOYS

IOWA STATE 1


- Increasing reductions in height
- Top to bottom
 - Increasingly effective lubricants
 - Showing larger increases in inner diameter with lower coefficient of friction

Modeling of Ring Forging Process

- Modeled using DEFORM[®]
- Highest stress was 32.8 ksi
 - Well below the yield strength of H13 steel
- Plastic deformation of H13 surface should not occur

ADVANCED NONFERROUS STRUCTURAL ALLOYS

- Aluminum ring 1" OD, ½" ID
- 0.2 inches per second compression velocity
- Applied to a 100 kip force

Next Steps

Task No.	Task
3	Procure coated die test samples and set up laboratory testing procedure
4	Perform plant trial of best PVD coating identified during laboratory testing
5	Reporting

Questions?

Trever Kehe

tjkehe@mymail.mines.edu

Kester Clarke <u>kclarke@mines.edu</u>

Steve Midson <u>smidson@mines.edu</u>

