Center for Advanced Non-Ferrous Structural Alloys An Industry/University Cooperative Research Center

Project 26: Deformation Mechanisms in Refractory-Based Complex, Concentrated Alloys

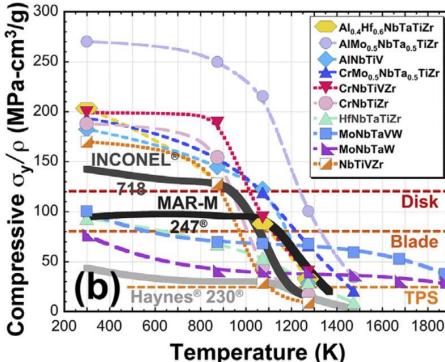
> Spring 2018 Semi-Annual Meeting Colorado School of Mines, Golden, CO April 11-12, 2018

Student: Francisco Gil Coury (CSM) Faculty: Drs. Michael Kaufman and Amy Clarke (CSM) Industrial Mentor: Drs. Kevin Chaput and Todd Butler (AFRL) Other Participants : John Foltz (ATI), Paul Mason (Thermo-Calc)

Project 26: Deformation Mechanisms in Refractory-Based Complex, Concentrated Alloys

 Student: Francisco Coury (Mines) Advisor(s): Michael Kaufman, Amy Clarke (Mines) 	Project Duration PhD: August 2015 to July 2018
 <u>Problem:</u> Main factors that control strength and ductility of refractory complex, concentrated alloys (RCCAs) are not fully understood <u>Objective:</u> Describe the mechanical behavior of RCCAs by means of conventional strengthening theories <u>Benefit:</u> Improved understanding of strength and ductility will lead to more efficient alloy design. 	 <u>Recent Progress</u> Finished alloy characterization on as-cast and heat-treated conditions Started compression tests at different temperatures in different single phase alloys Developed modelling framework to interpret thermally activated deformation Modified athermal solid solution strengthening model for body centered cubic alloys

Metrics									
Description	% Complete	Status							
1. Literature review	100%	•							
2. Production and characterization of as-cast alloys	100%	•							
3. Heat-treating, processing and characterization of the heat-treated/processed material	100%	•							
4. Mechanical testing the different alloys at different temperatures	90%	•							
5. Develop methodology for interpreting strength of the RCCAs	50%	•							

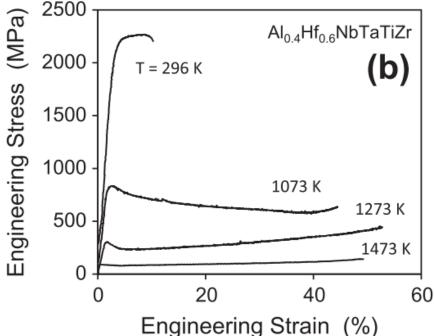

Industrial Relevance

- New class of materials early work by Senkov et al. (2011)
- Goal of expanding the applicability of refractory metals
 - High temperature strength
 - Low density
 - Easy to process
 - Better oxidation resistance

D.B. Miracle and O.N. Senkov, Acta Mater. 122, 448 (2017).

ADVANCED NONFERROUS STRUCTURAL ALLOYS

Challenges in RCCA Development


- Typical drawbacks with refractory alloys
 - Poor room temperature ductility and toughness
 - Poor corrosion and oxidation resistance
- Specific challenges with RCCA approach
 - Broad composition space
 - Several possible compositions
 - Experimentally challenging

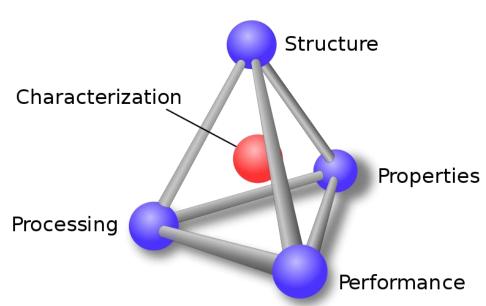
Senkov, O. N., Senkova, S. V. & Woodward, Acta Mater. 68, 214–228 (2014).

Butler, T. M., Chaput, K. J., Dietrich, J. R. & Senkov, O. N. J. Alloys Compd. 729, 1004–1019 (2017).

ADVANCED NONFERROUS STRUCTURAL ALLOYS

Where Do We Start?

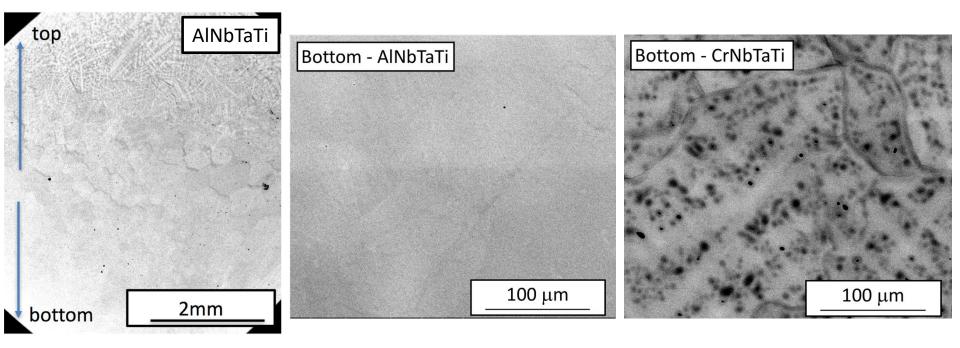
- Need composition dependent models to predict properties
- For RCCAs:
 - Phase equilibria
 - Strength
 - Ductility
 - Oxidation


Motivation and Methodology

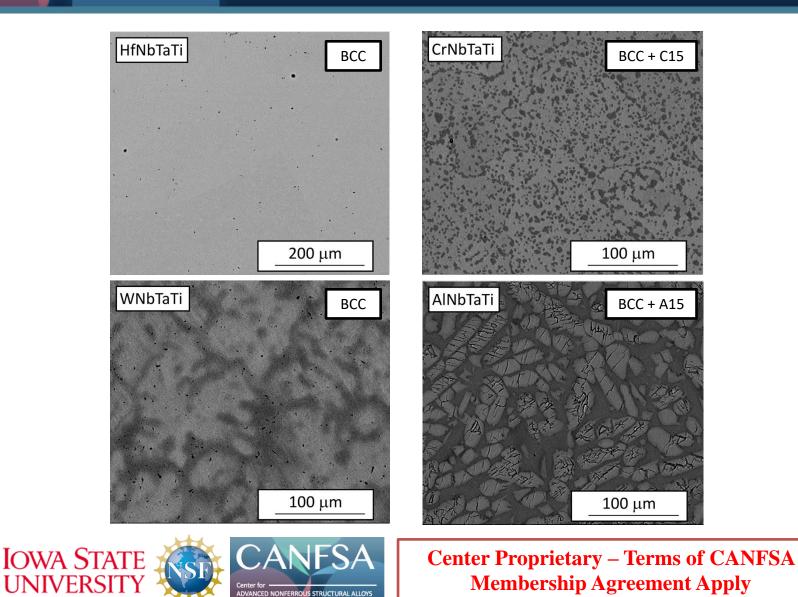
- Can we understand the strength and ductility?
 - Industrially-relevant compositions
- Approach
 - Phase equilibria
 - Microstructure
 - Processing
 - Mechanical properties

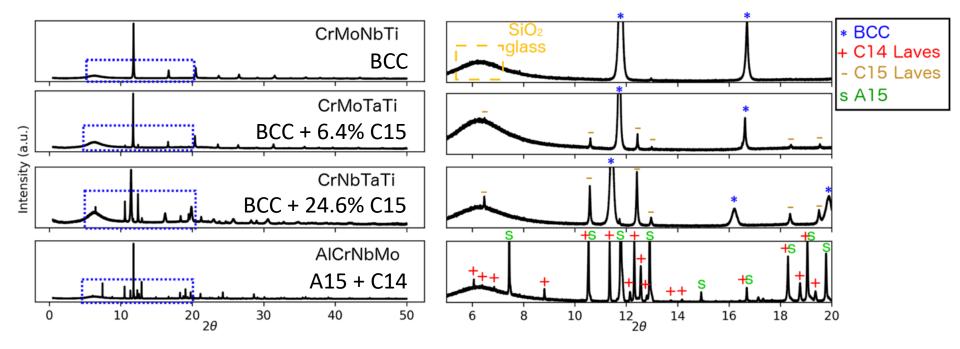
ADVANCED NONFERROUS STRUCTURAL ALLOYS

Alloy Selection


- 13 alloys using the following criteria:
 - BCC crystal structure
 - Density < 13 g/cm³
 - Cost < \$500/kg
 - No noble or rare elements
 - Fraction of binaries in thermodynamic database > 0.5
 - Small solidification range
 - No volatile elements
 - Low content of σ phase
- Cast and heat-treated at 1400 °C for 35 h

AICrMoNb AlHfTaTi AlHfNbTi AlMoNbTi AlNbTaTi **WNbTaTi HfNbTaTi** MoNbTaTi CrNbTaTi CrMoTaTi CrMoNbTi **CrNbTiW** CrTaTiW


Microstructure of As-Cast Alloys



Microstructure of Heat-Treated Alloys

COLORADO SCHOOL OF

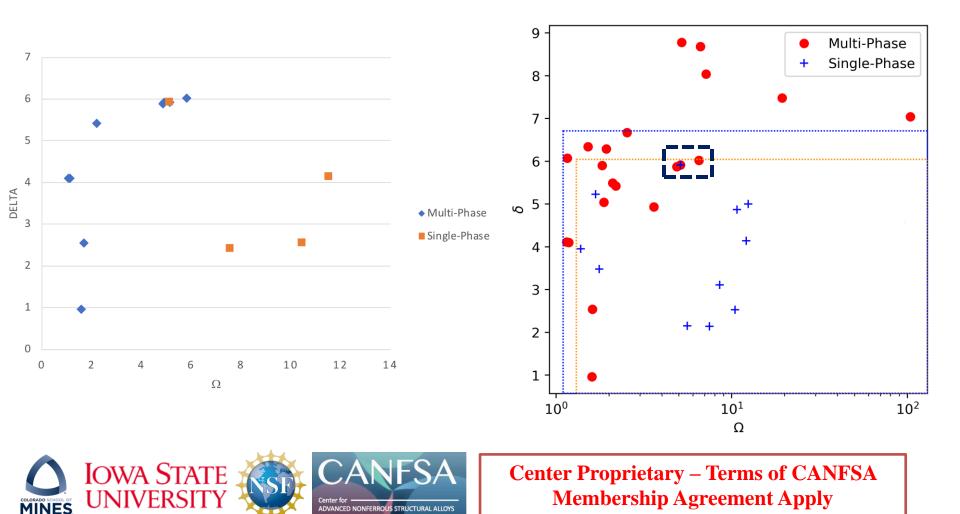
Synchrotron XRD Analysis of Cr-Containing Alloys

Models for Phase Prediction

- Empirical models based on Hume-Rothery rules
 - Delta (δ): atomic radii differences
 - Omega (Ω): differences in enthalpies, entropies
 of mixing and melting temperature
 - Delta chi ($\Delta \chi$): electronegativity

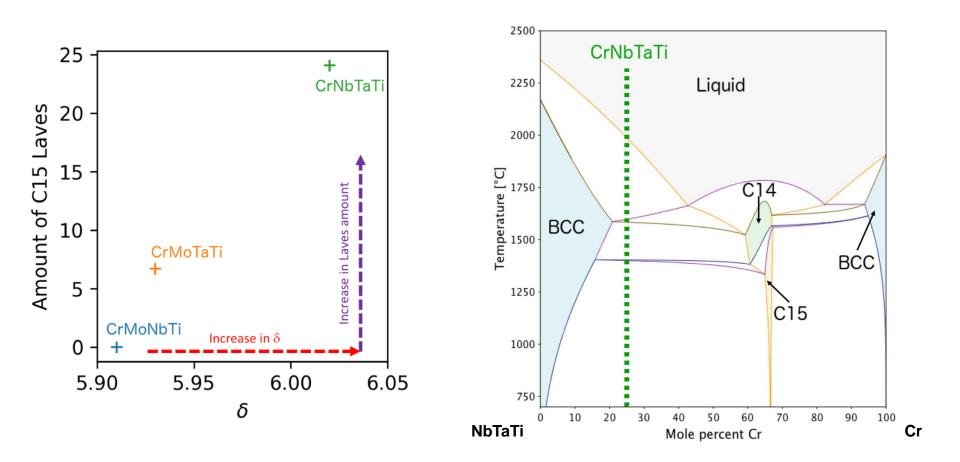
IOWA STATE

- CALPHAD: Thermo-Calc[®], Pandat[™]
 - Minimize free energy in a given system


$$\delta = \sqrt{\sum_{i=1}^{N} x_i \left(1 - x_i / \sum_{j=1}^{N} x_j r_j \right)^2},$$

$$\Omega = \frac{T_{\rm m} \Delta S_{\rm mix}}{|\Delta H_{\rm mix}|}$$

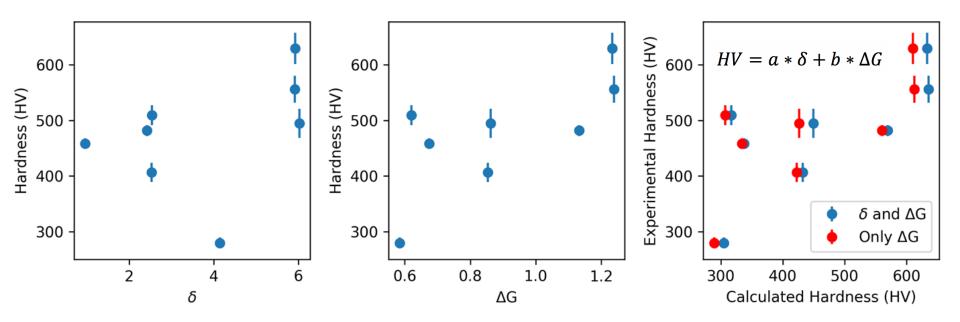
$$\Delta \chi = \sqrt{\sum_{i=1}^{N} x_i \left(\chi_i - \sum_{j=1}^{N} x_j \chi_j \right)^2},$$



Empirical Phase Predictions

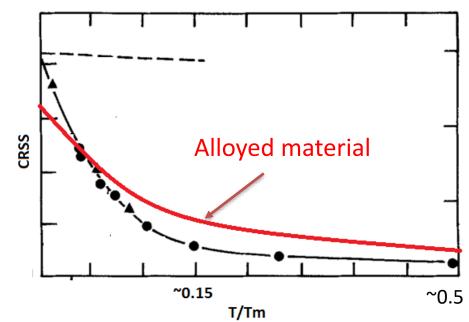
ADVANCED NONFERROUS STRUCTURAL ALLOYS

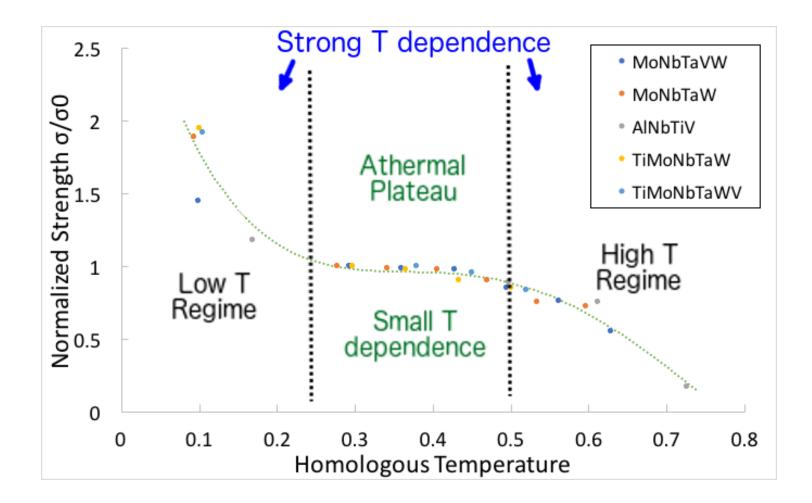
C15 Laves Phase Scales With δ


IOWA STATE UNIVERSITY

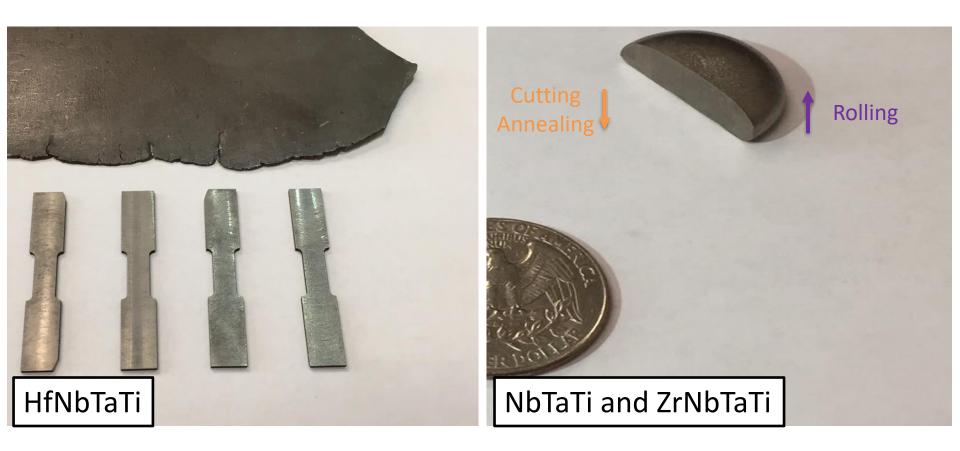
CALPHAD Predictions

- TCHEA2 predicts correct phases in 9 of 12 alloys
 - Except B2 phase in AlHfNbTi and AlHfTaTi
 - AlMoNbTi is not single-phase
- Temperatures and volume fractions need further refinement
- Significant improvement over TCHEA1
 - C14, C15 and A15


Single-Phase RCCA Hardness


BCC Metals Deformation

- Regimes II and III
 - High temperature dependence
 - Low mobility of screw dislocations
 - Brittle
- Regime I: athermal
 - Behavior closer to FCC metals
- Alloying changes the shape of the curve
 - Increases the plateau stress
 - Decreased temperature dependence in regime II
 - Softening in regime I



BCC RCCA Deformation

RCCA Cold Rolling

Thermally Activated Deformation Modelling

Thermal and athermal contributions to strength:

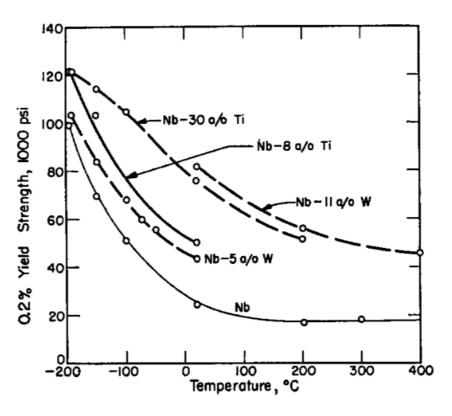
$$\tau = \tau^* + \tau^a$$

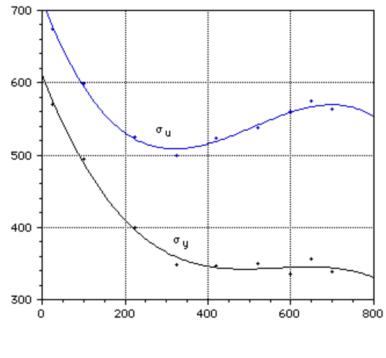
τb

Thermally activated barriers:

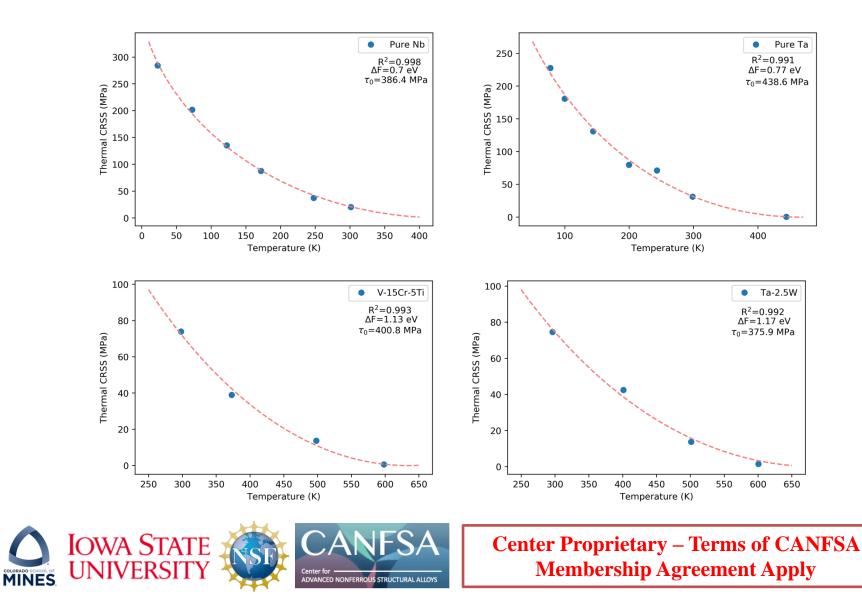
$$\sigma_{b} = F_{0} \left[\int_{a} \frac{1}{\sqrt{\tau_{0} - \tau_{i}}} \int_{a}^{p} \right]^{q} = F_{0} \left[1 - \left(\frac{\tau^{*}}{\tau_{0}^{*}}\right)^{p} \right]^{q}$$
Activation barrier:
$$\Delta G = F_{0} \left[1 - \left(\frac{\tau - \tau_{i}}{\tau_{0} - \tau_{i}}\right)^{p} \right]^{q} = F_{0} \left[1 - \left(\frac{\tau^{*}}{\tau_{0}^{*}}\right)^{p} \right]^{q}$$

Elastic modulus softening correction:

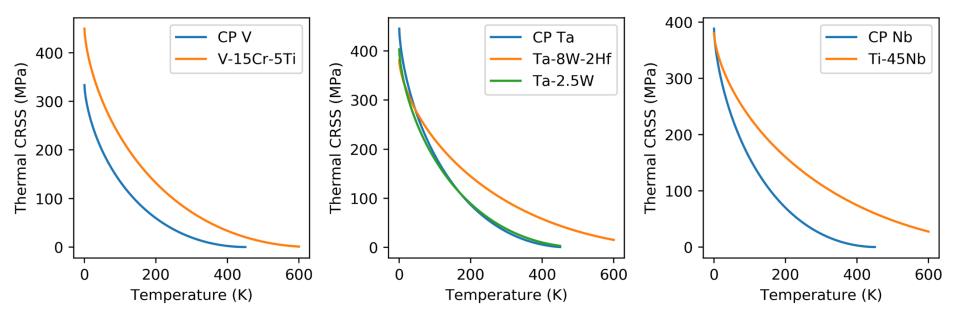

$$\frac{\mu(T)}{\mu_0} = f(T)$$


The p and q values: Shape of the barrier

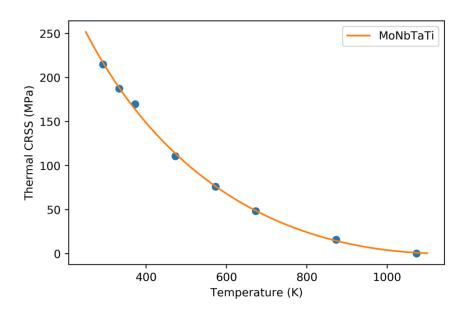
Application to Conventional Refractory Alloys

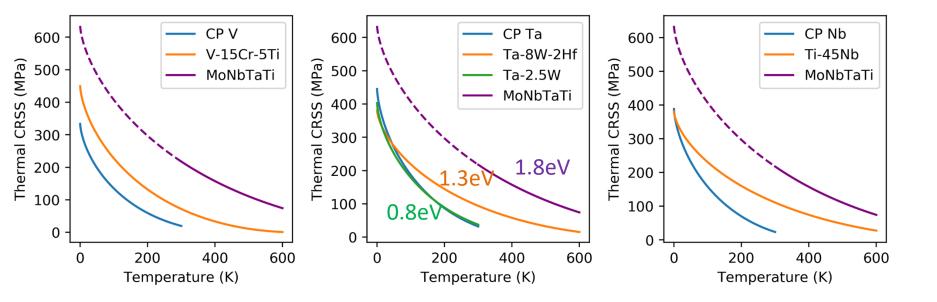

Temperature (C)

J.H. Bechtold, B. Road, J. Less-Common Met. 3 (1961) 1–12. S. Stud, VANADIUM ALLOY (V-15Cr-5Ti), 2018.


ADVANCED NONFERROUS STRUCTURAL ALLOYS

Conventional Refractory Alloy Thermal Activation


Conventional Refractory Alloy Comparison


BCC Deformation at Low Temperatures

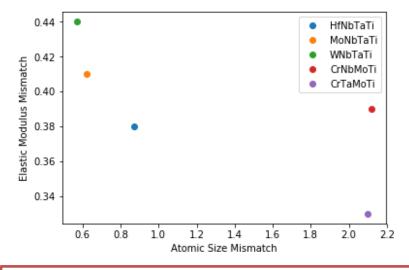
- Adapt σ -T models
 - Extract activation
 energies for double
 kink mechanism
 - Extrapolate the Peierls stress at OK

Thermal Activation of RCCAs

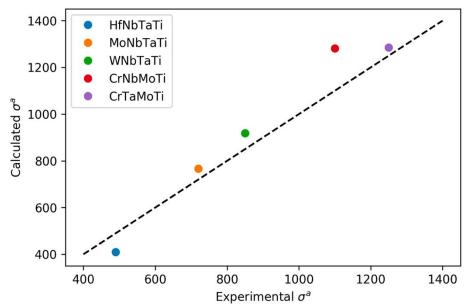
Athermal Deformation Component

• Toda-Caraballo model (semi-empirical):

Original formulation: Does not consider elastic modulus mismatch


$$B = 3\mu Z \left[\xi(\eta'^2 + \alpha^2 \delta^2)^{1/2} \right]^{4/3}$$

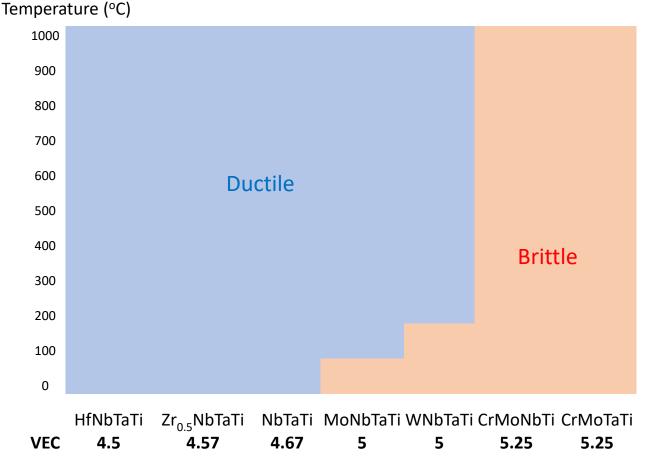
Elastic Size Mismatch Mismatch $\Delta\sigma_{ss}^{m} = 3Z\mu \left(\frac{\xi\alpha}{a}\right)^{4/3} (x_{1}, x_{2}, \dots, x_{n})$ $\begin{pmatrix} 0 & \left|\frac{da}{x_{1}^{2}}\right|^{4/3} \cdots & \left|\frac{da}{x_{1}^{n}}\right|^{4/3} \\ \left|\frac{da}{x_{2}^{1}}\right|^{4/3} & 0 & \cdots & \left|\frac{da}{x_{2}^{n}}\right|^{4/3} \\ \vdots & \dots & \ddots & \vdots \\ \left|\frac{da}{x_{n}^{1}}\right|^{4/3} & \left|\frac{da}{x_{n}^{2}}\right|^{4/3} \cdots & 0 \end{pmatrix} \begin{pmatrix} x_{1} \\ \vdots \\ x_{n} \end{pmatrix}$


Alloy	Experimental σ ^a (MPa)	Calculated σ ^a (MPa)
HfNbTaTi	490	448
MoNbTaTi	720	580
WNbTaTi	850	608
CrMoNbTi	1000	2248
CrMoTaTi	1250	2475

Athermal Deformation Component

- Incorporate elastic mismatch
- Stronger alloys are outliers

Alloy	Experimental σ ^a (MPa)	Calculated σ ^a (MPa)
HfNbTaTi	490	410
MoNbTaTi	720	767
WNbTaTi	850	919
CrMoNbTi	1100	1282
CrMoTaTi	1290	1285



Ductility of RCCAs

ADVANCED NONFERROUS STRUCTURAL ALLOYS

Ductility criteria

- 30% compression without fracture
- Ductility increases with VEC

Summary

- TCHEA2 provides improved predictions
- Narrower δ and Ω window for RCCAs
- Athermal and thermal components needed for RCCAs
- The activation energy of RCCAs is larger than conventional refractory alloys
- Current models do not describe the athermal component
 - Incorporating elastic modulus mismatch improves predictions

Gantt Chart

Tasks	11/1/16	12 / 15 / 16	2/1/17	3 / 15 / 17	5/1/17 6/15/17	8/1/17	9/15/17	11/1/17	12 / 15 / 17	2/1/18	3/15/18	5/1/18	6 / 15 / 18	8/1/18	9 / 15 / 18
1 Literature Review															
1.1 State of the Art of HEAs															
1.2 Strength of Conventional Metals															
2 Strength of A1 Alloys											Ī				
2.1 Selection of Alloys															
2.2 Casting and Rolling															
2.3 Characterization															
2.4 Mechanical Testing															
2.5 Solid Solution Modeling															
2.6 Nanoindentantion Modeling															
3 Strength and Diuctility of A2 Alloys															
3.1 Selection of Alloys															
3.2 Castting															
3.3 Characterization											Ī				
3.4 Mechanical Testing											Í				
3.5 Solid Solution Modeling											Í				
3.6 Ductility Modeling											1				
4 Writing Thesis															
			0		D		• .						~ • •		

Center for ADVANCED NONFERROUS STRUCTURAL ALLOYS

Thank you very much!

Francisco Gil Coury fcoury@mines.edu

