Center for Advanced Non-Ferrous Structural Alloys

An Industry/University Cooperative Research Center

Project 22: Formation, High Temperature Stability and Mechanical Properties of Microeutectics in Bulk Solidified AI-Fe-Si-V and Related Alloys

Spring 2018 Semi-Annual Meeting Colorado School of Mines, Golden, CO April 11-12, 2018

Student: Joe Jankowski (Mines)

Faculty: Michael Kaufman, Amy Clarke, Robert Field, Steve Midson (Mines) Industrial Mentors: Krish Krishnamurthy (Honeywell), Paul Wilson (Boeing)

Project 22: Formation, High Temperature Stability and Mechanical Properties of Microeutectics in Bulk Solidified AI-Fe-Si-V and Related Alloys

 Student: Joe Jankowski (Mines) Advisor(s): Michael Kaufman, Amy Clarke (Mines) 	Project Duration PhD: June 2015 to August 2019				
Problem Aluminum alloys with acceptable high temperature structural properties are expensive and difficult to produce. Began cooling rate / repeatability analysis Objective Develop high-temperature, high-strength Al alloys without use of rapid solidification by forming stable microeutectic. Develop high-temperature Al alloys. Benefit Reduce production cost and increase selection of high performance high-temperature Al alloys. MEM/Rietveld method			İS		
Metrics					
Description			Status		
1. Develop experimental protocols for reproducible castings			•		
2. Make castings from baseline material to identify key research questions			•		
3. Develop crystallography / phase stability knowledge of α-phase			•		
4. Assess ability to produce microeutectic in chill castings			•		
5. Determine how fundamental solidification parameters affect microeutectic formation			•		

Project Motivation

- Microeutectic between Al and α-Al₁₃(Fe,V)₃Si in chill castings
- Hardness of microeutectic similar to RS8009
- Lower cooling rate than rapidly solidified alloys
 - Lower cost of production
- Potential high-temperature Al structural alloy

Background

- Most of the literature examines cooling rates <10 K/s or >10⁴ K/s for this alloy
- Present study looks at cooling rates between 10² K/s and 10³ K/s

ADVANCED NONFERROUS STRUCTURAL ALLOYS

IOWA STATE

- Lamellar microeutectic microstructure in as-cast condition
- Potential application as lightweight high temperature structural alloy

Background

Morphology of phases in chill cast 8009

Background

- Microeutectic fracture surface
- Dimpled surface
- Indicative of ductile fracture

Industrial Relevance

- Development of a lower cost high-temperature Al structural alloy
- Identify alternative processing routes for hightemperature Al alloys
- Rapid screening of composition space for nonequilibrium systems

Marshall, R. (2016). Master's Thesis.

ADVANCED NONFERROUS STRUCTURAL ALLOYS

Mechanical properties of selected Al alloys (RS8009 is high-temperature alloy)

Presentation Overview

- Recent Progress
 - Cooling Rate / Repeatability
 - Differential Scanning Calorimetry (DSC)
 - MEM/Rietveld Charge Density
- Future Work
 - Proposal Topics

Early Repeatability Testing

- Tested repeatability of castings
 - 4 at a fixed composition
 - Etched with Keller's reagent to highlight different constituents

ADVANCED NONFERROUS STRUCTURAL ALLOYS

Sectioned to show center of cylinder

Al (at %)	Fe (at %)	Mn (at %)	Cr (at %)	Si (at %)
Bal.	1.5	1.5	0.4	2.0

Early Repeatability Testing

Four castings of the same AI-Fe-Mn-Cr-Si alloy using old procedure (8 mm diameter)

- Used indirect melt temperature measurement
 - Changes in superheat between castings
 - Melt temperature not linked to physical parameter
- Lack of consistent as-cast structure

Current Repeatability Study

- Use 356 as test alloy
- Experimental determination of cooling rate
 - Using secondary dendrite arm spacing (SDAS)
- Focus on developing a reproducible protocol
 - Superheat
 - Direct measurement of melt temperature
- Cast at 100 °C above liquidus of 356 (720 °C)

SDAS and Cooling Rates

- Correlation extends to rapid solidification cooling rates
- Some inherent scatter
- Sensitive to Si content

Correlation between SDAS and Cooling Rate for A356/357

Q.J. Wang et al (2001). Journal of Light Metals.

ADVANCED NONFERROUS STRUCTURAL ALLOYS

Cooling Rates in Castings

- A356.2 castings
- Data points are median
- Error bars are quartiles

1000

DSC Motivation

- Current goal of alloying is to reduce equilibrium liquidus temperature
 - Reduce superheat
 - Increase undercooling

```
ADN1 = 3.4 at% TM
ADN2 = 4.5 at% TM
8009 = 5.0 at% TM
```

Assess liquidus of new compositions vs. 8009

ADVANCED NONFERROUS STRUCTURAL ALLOYS

	Al (at%)	Fe (at%)	Mn (at%)	Cr (at%)	V (at%)	Si (at%)
ADN1	Bal.	1.5	1.5	0.4	n/a	2.0
ADN2	Bal.	2.0	2.0	0.5	n/a	2.7
8009	Bal.	4.3	n/a	n/a	0.7	1.7

Liquidus of ADN1 vs. ADN2 vs. 8009

ADVANCED NONFERROUS STRUCTURAL ALLOYS

Center Proprietary – Terms of CANFSA Membership Agreement Apply

IOWA STATE

COLORADO SCHOOL OF

MEM / Rietveld Method

• Can be used to determine charge density

ADVANCED NONFERROUS STRUCTURAL ALLOYS

- From diffraction experiments
- Bonding information
- Atomic positions
- Use to improve DFT predictions
 - *α*-phase/alloy composition
 - Charge density validation

MEM / Rietveld Method

Example Charge Density (Al-Ge)

Example Charge Density (\alpha-Phase)

Charge densities in 100 plane for α -Al-(Fe,Mn)-Si (experimental)

A

ADVANCED NONFERROUS STRUCTURAL ALLOYS

Charge Density (\alpha-Phase)

 α -AlMnSi

 α -Al(Fe,Mn)Si

Visible change in charge density of TM-(Al,Si) bonds, can be used in conjunction with DFT to fully determine crystal structure

MEM/Rietveld Progress

- Samples for ~9 compositions of α-phase prepared
 - 3 AI-Fe-Mn-Si
 - 3 AI-Fe-Cr-Si
 - 3 Al-Fe-V-Si

IOWA STATE

- Use for detailed crystallographic analysis
 - Determine actual structure
- Will allow for <u>full compositional prediction</u> from DFT
 - Transition metals <u>and</u> Si
 - Si content of α -phase varies from <6% to ~13%

ADVANCED NONFERROUS STRUCTURAL ALLOYS

Proposed Work

- TIG welding study
- Microstructure / cooling rate study
- DFT calculations
- B addition study
- Mechanical properties

TIG Welding

- Perform autogenous TIG welds on plates
- Controlled solidification velocity
 - Tie microeutectic formation to fundamental solidification behavior
- Use SYSWELD modeling to design experiment
 - Plate dimensions
 - Arc power
 - Weld speed

Microstructure / Cooling Rate

- Build off of 356 cooling rate study
- Link cooling rate, composition, and microstructure in chill mold
- Do for several alloys
 - AI-Fe-Mn-Cr-Si or (AI-Fe-Mn-V-Si)
 - 3.5 to 5.0 at % transition metals
- Assess ability to form microeutectic in chill mold

ADVANCED NONFERROUS STRUCTURAL ALLOYS

Alloy	Al	Fe	Mn	Cr	V	Si
~3.5 at% TM	Bal.	1.5 (1.6)	1.5 (1.6)	0.4 (n/a)	n/a (0.2)	2.0
~4.0 at% TM	Bal.	1.8 (1.9)	1.8 (1.9)	0.5 (n/a)	n/a (0.2)	2.3
~4.5 at% TM	Bal.	2.0 (2.1)	2.0 (2.1)	0.6 (n/a)	n/a (0.3)	2.6
~5.0 at% TM	Bal.	2.2 (2.4)	2.2 (2.4)	0.7 (n/a)	n/a (0.3)	2.9

New DFT Calculations

- Use MEM/Rietveld method to determine crystal structure of *α*-phase
 - Al-Fe-Cr-Si
 - Al-Fe-V-Si
 - Al-Fe-Mn-Si
- Characterize bonding and Si atomic positions
- Use to perform high accuracy DFT modeling
 - Predict full phase composition

DFT Composition Prediction

B additions

- Observed to promote primary *α*-phase nucleation
 - In Cr, V, Mo containing alloys
- May promote microeutectic formation
 - Vs. dendritic AI + microeutectic

ADVANCED NONFERROUS STRUCTURAL ALLOYS

- 2 apparent solidification pathways
 - For AI + α -phase alloys

As-Cast Microstructure

B Addition Goal

ANCED NONFERROUS STRUCTURAL ALLOYS

OWA STATE

1a) liquid undercools enough to nucleate Al, grows as primary Al dendrite until undercooling decreases

2a) primary α -phase particle forms 2b) primary α -phase in local equilibrium with liquid 2c) local liquid undercooled, nucleates Al and grows out into coupled growth region

B addition may promote second pathway, reduce undercooling required

Mechanical Properties

- Quantify properties of microeutectic
- Method depends on success in producing microeutectic
 - Hardness/microhardness
 - Compression
 - Tension
- Goal is to test at room temperature and elevated temperature (300 °C)

Gantt Chart

Questions/Discussion

Thank you!

Joe Jankowski jjankows@mines.edu (925) 864-1543

Alloying Strategy

Crystal Structure for Phase of Interest

- From literature or diffraction
- For this study, α -phase

Density of States (DOS) for Phase of Interest

Reference experimental

Unknown theoretical

composition

compositions

Prediction of Stable Stoichiometries for Phases of Interest

- Compare theoretical DOS to reference DOS
- Apply "maximum bonding criterion"

- Experimental Alloys with Predicted Composition
- Predict ratio of transition metals
- Refine stability criteria

Why Density of States?

ADVANCED NONFERROUS STRUCTURAL ALLOYS

Calculation Results

- Ti, V, Cr too few electrons
- Fe, Co, Ni, Cu too many electrons
- Co, Ni, Cu have shallow pseudogap
 - Weak bonding interaction
 - Not expected to form α -phase

lpha-AlXSi ternary phase	Area under curve from "stable" to calculated Fermi level	Deep pseudogap
Ti	-245	Yes
V	-117	Yes
Cr	-49	Yes
Mn	0 (reference)	Yes
Fe	22	Yes
Со	120	Borderline
Ni	145	No
Cu	130	No

Predictions vs. Reality

- Al-Fe-V-Si and Al-Fe-Mn-Cr-Si verified by chill castings
- Others verified under equilibrium conditions (XRD + EDS)
 - First time Al-Fe-Cr-Si observed in equilibrium*
- Co not expected to form α -phase due to low d-band energy
- DFT useful for downselecting possible composition space
 - Not exact, but identifies useful design space

ADVANCED NONFERROUS STRUCTURAL ALLOYS

Alloy System	Expected to form?	lpha-phase?
Al-Fe-V-Si	Yes	Yes
Al-Fe-Cr-Si	Yes	Yes
Al-Co-Ti-Si	No	No
Al-Co-Cr-Si	No	No
Al-Fe-Mn-Cr-Si	Yes	Yes

*Processing of Structural Metals by Rapid Solidification. (1986).

