Center/Site: Center for Advanced Non-Ferrous Structural Alloys (CANFSA) / Colorado School of Mines		
Tracking No.: 22	Phone : (925) 864-1543	
Center/Site Director: CANFSA /		Type: Continuing
Project Leader: Joseph Jankowski		Proposed Budget: \$200,000
service temperature applications. The between Al and the alpha-phase int alloy 8009 (Al-Fe-V-Si) are propose	his will be done by utilizing ermetallic. In order to acco d on the basis of density fu ul, the alloy could have a se patibility with conventional p	low-cost aluminum structural alloy for high the microeutectic microstructure formed mplish this, modifications to the baseline nctional theory (DFT) calculations and ervice temperature as high as 400 degrees processing routes, unlike the high
be performed. First, a crystallograp	hic study of the alpha phase oduce desirable structures	alpha microeutectic, several experiments will c combined with DFT analysis will be in a chill casting will be assessed. Finally, ds.
Related work elsewhere: There National Laboratory on Al-Ce eutect		r to this one being performed at Oak Ridge
	ngth since the volume fracti	eld an alloy with better high temperature on of the reinforcing phase appears to be ectics.
	system to examine in detail le microstructures in a chill	are as follows: 1) develop a model of the I 3) develop parameters for a welding study casting and 4) use DFT to develop
	-phase in 8009 that was de	iverable for this year is a publication on the termined earlier in this work. A publication across several alloy systems.
	s will allow for steel and tita	society : The development of a low-cost Al anium parts to be replaced with Al. This will automotive industry.
Research areas of expertise nee (Electronic Structure), Physical Meta		Crystallography, Solid State Physics asting
Potential Member Company Ber that can be refined to meet the spe		earch to develop an innovative alloy system panies.
		lines on producing Al + alpha microeutectic on of promising alloy systems for future.