Center for Advanced Non-Ferrous Structural Alloys

An Industry/University Cooperative Research Center

Project 19: Mechanism of Dwell Fatigue Crack Initiation in Ti-7AI Under Biaxial Tension-Tension Loads

Thrust Area 2: High Performance Non-Ferrous Alloys

Spring 2018 Semi-Annual Meeting Colorado School of Mines, Golden, CO April 11-12, 2018

Student: Garrison Hommer (CSM)

Faculty: Dr. Aaron Stebner (CSM) & Dr. Peter Collins (ISU) Industrial Mentor(s): Dr. Adam Pilchak (AFRL)

Project 19: Mechanism of Dwell Fatigue Crack Initiation in Ti-7Al Under Biaxial Tension-Tension Loads Dashboard

 Student: Garrison Homer (Mines) Advisor(s): Aaron Stebner (Mines), Adam Pilchak (AFRL) 	Project Duration PhD: September 2015 to March 2018									
 <u>Problem:</u> Stress dwell periods are detrimental to fatigue life of Ti alloys. Biaxial tension-tension failure is not predicted from uniaxial data. <u>Objective:</u> Under biaxial tension-tension loads, determine microstructural mechanisms of dwell fatigue and define hard and soft grain orientations. <u>Benefit:</u> Improved life management for biaxially loaded locations. 	 <u>Recent Progress</u> Cyclic evolutions of stress m Interdependencies of stress and loading ratios (i.e., 1:4 a) Effects of grain neighborhoo individual grains Successfully defended and s 	netrics metrics, orientations, and 1:1 X:Y stress) od characteristics on submitted PhD thesis								
Metrics										
Description	% Complete	Status								
1. Planar biaxial specimen design	100%	•								
2. Literature review	100%	•								
3. Macroscopic characterization of tension-tension mechanical resp	100%	•								
4. Microstructural mechanisms of dwell fatigue under biaxial tension	100%	•								
5. Provide microstructural data for instantiation of crystal plasticity s	100%	•								

5. Provide microstructural data for instantiation of crystal plasticity simulations of 11 dwell fatigue

Major components of this project

- Design of experimental platform
 - Planar biaxial platform for nondestructive 3D grain scale studies via high energy diffraction microscopy (HEDM)

 Application of experimental platform
 Dwell fatigue in alpha titanium subjected to multiaxial loads

Major components of this project

- > Design of experimental platform
 - Planar biaxial platform for nondestructive 3D grain scale studies via high energy diffraction microscopy (HEDM)

 Application of experimental platform
 Dwell fatigue in alpha titanium subjected to multiaxial loads

In situ HEDM planar biaxial experiment

- Specimen geometry •
- Planar biaxial load frame

- Synchrotron X-ray diffraction •
- Data collection & analysis technique

Video courtesy of Harshad Paranjape

Multiscale In situ HEDM data capabilities

Multiscale In situ HEDM data capabilities

Major components of this project

- Design of experimental platform
 - Planar biaxial platform for nondestructive 3D grain scale studies via high energy diffraction microscopy (HEDM)
- Application of experimental platform
 Dwell fatigue in alpha titanium subjected to multiaxial loads

Biaxial Dwell fatigue in Ti-7AI outline

- What is dwell fatigue, why does it affect Ti alloys, and why is this work relevant?
- Material and experimental methods
- Normalized resolved shear stress pole figures (nRSS PFs)
- Plasticity metrics: stress coaxiality angle (SCA) and Mises stress

ADVANCED NONFERROUS STRUCTURAL ALLOY

- Mechanics of cyclic evolutions
- Mechanics of load shedding
- Grain neighborhood effects

Biaxial Dwell fatigue in Ti-7AI outline

- What is dwell fatigue, why does it affect Ti alloys, and why is this work relevant?
- Material and experimental methods
- Normalized resolved shear stress pole figures (nRSS PFs)
- Plasticity metrics: stress coaxiality angle (SCA) and Mises stress
- Mechanics of cyclic evolutions
- Mechanics of load shedding
- Grain neighborhood effects

Cold dwell fatigue reduces lifetime in Ti alloys

Reduction in fatigue life resulting from stress dwell periods

> $\sigma_{max}/\sigma_{0.2}$ = 0.92, 1, 1.05 (80 s) life reduction = 2, 5, 30

➢ Occurs at temperatures ≤ ~200 °C

11

Thermal activation eliminates dwell effect at T > ~200 °C

Origin of dwell fatigue in Ti alloys

- $\geq \alpha$ -phase in Ti alloys has HCP crystal structure
- Limited deformation mechanisms at low temperature
 - Twinning suppressed in dwell sensitive alloys by aluminum content (> 5 wt. %)
 - Strong slip system anisotropy (prism:basal:pyramidal II, 0.9 : 1.0 : 3.0)
 - Less hardening, room temperature creep in soft grains (rate dependence) A Luque et al., Modelling and

Origin of dwell fatigue in Ti alloys

$\geq \alpha$ -phase in Ti alloys has HCP crystal structure

Limited deformation mechanisms at low temperature

- Twinning suppressed in dwell sensitive alloys by aluminum content (> 5 wt. %)
- Strong slip system anisotropy (prism:basal:pyramidal II, 0.9 : 1.0 : 3.0)
- Less hardening, room temperature creep in soft grains (rate dependence) A Luque et al., Modelling and

¹⁴ Ti alloy compressor discs experience biaxial dwell fatigue

- > Titanium alloy jet engine turbine compressor discs
- Enhance life prediction
 - Biaxial loading effect on fatigue life not well characterized

RootWeb1:4 X:Y stress biaxial tension1:1 X:Y stress biaxial tension

http://www.daviddarling.info/images/Concorde_Olympus_engine.jpg

http://www.ashbyinteriors.co.uk/wp-content/uploads/2014/09/DSC_0707-p.jpg

Ti alloy biaxial dwell fatigue goals:

- Define multiaxial hard and soft grain orientations
- Determine microstructural mechanisms
- Investigate grain behaviors as functions of:
 - ➢ Cycles
 - ➢ Orientation
 - Neighborhood characteristics
- Qualitative life assessment relative to uniaxial dwell fatigue
- Provide insight into observed failure orientations

Biaxial Dwell fatigue in Ti-7AI outline

- What is dwell fatigue, why does it affect Ti alloys, and why is this work relevant?
- Material and experimental methods
- Normalized resolved shear stress pole figures (nRSS PFs)
- Plasticity metrics: stress coaxiality angle (SCA) and Mises stress
- Mechanics of cyclic evolutions
- Mechanics of load shedding
- Grain neighborhood effects

Material microstructure

Methods for in situ dwell fatigue at APS

- Tension-tension 1:1 and 1:4 X:Y stress ratio dwell fatigue
 - Used specimens from previous experiments (100 and 310 cycles at ~80 % yield stress)
- 120 second holds in force control
- 1 second load and unload
- ~100 % yield stress
- HEDM data points at load and unload
 - ➢ Reference & cycles 1 − 5, 50
 - > 1 x 0.8 mm² total beam size
 - ~1.2 x 0.8 x 0.5 mm³ illuminated volume

Biaxial Dwell fatigue in Ti-7AI outline

- What is dwell fatigue, why does it affect Ti alloys, and why is this work relevant?
- Material and experimental methods
- Normalized resolved shear stress pole figures (nRSS PFs)
- Plasticity metrics: stress coaxiality angle (SCA) and Mises stress

ADVANCED NONFERROUS STRUCTURAL ALLOYS

- Mechanics of cyclic evolutions
- Mechanics of load shedding
- Grain neighborhood effects

Composites of Basal-Prismatic *normalized* resolved shear stress on (0001) pole figures (IPFs)

²¹ Composites of Basal-Prismatic *normalized* resolved shear stress on (0001) pole figures (IPFs)

²² Average nRSS in 1:4 and 1:1 X:Y stress ratio specimens

Biaxial Dwell fatigue in Ti-7AI outline

- What is dwell fatigue, why does it affect Ti alloys, and why is this work relevant?
- Material and experimental methods
- Normalized resolved shear stress pole figures (nRSS PFs)
- Plasticity metrics: stress coaxiality angle (SCA) and Mises stress
- Mechanics of cyclic evolutions
- Mechanics of load shedding
- Grain neighborhood effects

²⁴ Stress coaxiality angle (SCA) and Mises stress as metrics for plastic deformation

Plastic deformation leads to increase in SCA and decrease in Mises stress

Stress Coaxiality Angle: $\theta =$ scalar measure of alignment betweenapplied stress tensor and grain stress tensor

$$\theta = \cos^{-1} \left(\frac{\sigma_{applied} : \sigma_{grain}}{|\sigma_{applied}| |\sigma_{grain}|} \right)$$

Biaxial Dwell fatigue in Ti-7AI outline

- What is dwell fatigue, why does it affect Ti alloys, and why is this work relevant?
- Material and experimental methods
- Normalized resolved shear stress pole figures (nRSS PFs)
- Plasticity metrics: stress coaxiality angle (SCA) and Mises stress
- Mechanics of cyclic evolutions
- Mechanics of load shedding
- Grain neighborhood effects

Empirical cumulative distribution functions (ECDFs) highlight cyclic SCA differences in 4:4 & 1:4 stress ratios

- 1:4 higher median SCA
 (20.4°) indicates more plastic
 deformation than 4:4 (12.4°)
- 1:4 low SCA tail indicates fewer hard behaving grains than 4:4
- ➢ 4:4 cyclic shift indicates more cyclic plasticity than 1:4
 - Less plastic shakedown in 1:1, 150 cycles vs. 360
 - Basal slip dominance causes less hardening

Center Proprietary – Terms of CANFSA Membership Agreement Apply

26

Mises stress ECDFs highlight greater soft-hard grain disparity in 4:4 stress ratio

4:4 ratio has wider distribution

27

- Larger disparity between soft and hard grains
- 4:4 ratio cyclic behavior indicative of load shedding
 - Upper tail of 4:4 ratio shifts to higher stress
 - Lower half of 4:4 ratio shifts to lower stress

Ti₃Al precipitates (coherent)

- Initial strengthening followed by glide plane softening & highly planar slip after shearing
- Observed in monotonic loading

Pagan et al., Acta. Mat., 2017

Ti₃Al precipitates (coherent)

- Initial strengthening followed by glide plane softening & highly planar slip after shearing
- Observed in monotonic loading

Shift in basal ECDF at high RSS indicates cyclic basal softening

Ti₃Al precipitates (coherent)

- Initial strengthening followed by glide plane softening & highly planar slip after shearing
- Observed in monotonic loading

Pagan et al., Acta. Mat., 2017

- 4:4 basal CRSS > 1:4 basal CRSS
- 4:4 softening > 1:4 softening
 - ➤ 150 vs. 360 cycles
 - Less plastic shakedown in 4:4

Less hardening in 4:4

Cycle 101: more Ti₃Al shearing
 Cycle 150: more planar slip

Membership Agreement Apply

Biaxial Dwell fatigue in Ti-7AI outline

- What is dwell fatigue, why does it affect Ti alloys, and why is this work relevant?
- Material and experimental methods
- Normalized resolved shear stress pole figures (nRSS PFs)
- Plasticity metrics: stress coaxiality angle (SCA) and Mises stress
- Mechanics of cyclic evolutions
- Mechanics of load shedding
- Grain neighborhood effects

SCA decreases with increasing Mises stress except at highest stresses

Stronger 1:1 basal nRSS dependence due to texture

33

- 1:1 has distinctly hard grains
- Highest Mises stress grains show SCA increase

Hydrostatic stress does not trend with SCA, Mises stress, or orientation

34

 \blacktriangleright Hydrostatic stress: $\sigma_{\rm H} = (\sigma_{11} + \sigma_{22} + \sigma_{33}) / 3$

SCA exhibits strong trends with stress triaxiality and orientation

Basal nRSS

0.5

0.4

0.3

0.2

0.1

1000 1200

800

Stress triaxiality = $\sigma_{\rm H} / \sigma_{\rm VM}$

35

- Stress triaxiality at minimum S plane stress elastic calculation ratio
 - Higher indicates load shedding
 - Lower indicates load receiving

Coaxiality Angle (°)

30

20

10

0

200

400

600

³⁶ Out of plane stress trends strongly with stress triaxiality

X and Y stresses are directly affected by load shedding and receiving

³⁷ Out of plane stress trends strongly with stress triaxiality

- X and Y stresses are directly affected by load shedding and receiving
- Basal nRSS Z stress is driven by X and Y stresses 2.5 2 0.41.5 0.3 1:1 0.2 Mechanism of crack initiation on soft 0.1 0.5 (near) basal planes due to load shedding: -500 0 500 Z Stress (MPa) Basal nRSS > Planar dislocation pileup: microvoids 2 0.5High stress triaxiality 0.4 1.5 0.3 Decohesion of (near) basal planes 1:4 0.2 0.5 0.1 -400-200200 400 0

Out of plane stress trends strongly with stress triaxiality

- X and Y stresses are directly affected by load shedding and receiving
- Z stress is driven by X and Y stresses
- Mechanism of crack propagation on hard (near) basal planes due to load shedding:
- Initiation in soft neighbor
 Additional load shedding
 Removal of Z (Poisson) direction constraint

38

Biaxial Dwell fatigue in Ti-7AI outline

- What is dwell fatigue, why does it affect Ti alloys, and why is this work relevant?
- Material and experimental methods
- Normalized resolved shear stress pole figures (nRSS PFs)
- Plasticity metrics: stress coaxiality angle (SCA) and Mises stress
- Mechanics of cyclic evolutions
- Mechanics of load shedding
- Grain neighborhood effects

⁴⁰ Neighborhood dependencies of 1:1 soft grains with minimum Mises stress

(0001)

- Selected grains with lowest Mises stress
 - Indicates unconstrained plastic deformation
 - Soft grains in soft neighborhoods
- SCA:
 - Decreases with increasing neighborhood Mises stress
 - Increases with increasing basal nRSS (outliers)
 - Increases with increasing prismatic nRSS
 - Dual slip family activation results in higher SCA than single

Summary

- New experimental platform enables nondestructive multiaxial 3D micromechanical studies
 - Custom planar biaxial load frame & specimen geometry
 - Advanced materials (anisotropy, asymmetry, path dependence)
- > Dwell fatigue in Ti-7Al under biaxial tension-tension loads
 - HCP (α) phase is source of dwell fatigue: limited and anisotropic slip systems
 - Improve life management of jet engine turbine compressor discs
 - Defined soft and hard grain orientations (nRSS PFs)
 - Qualitative assessment of lifetime differences between uniaxial and biaxial loading
 - Observed cyclic basal slip system softening
 - Observed mechanics of dwell fatigue (load shedding, stress tensor evolution, grain neighborhood effects)
 - Provided new insight into mechanisms of crack initiation and propagation
 - Hard neighborhoods reduce SCA and increase Mises stress in soft grains (constraint)

- Ti-7Al mechanics publications
- Fractography and microstructural characterization
- Redo experiments with equal cycles between 1:1 and 1:4 stress ratios
- > Redo experiments under strain control
- Dwell fatigue lifetime tests
- Design to promote multiaxial stress states in dwell sensitive components
- Incorporate basal softening into models

			2017	,						2018				
Name	Begin date	End date	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	l Feb	l Mar	Apr	May
 Planar Biaxial Specimen Design 	6/1/15	11/18/16					9/30/17							
 FEA optimization 	6/1/15	8/13/15												
 Experimental validation 	8/13/15	11/18/16												
 Literature Review 	9/1/15	5/10/18												-
 General dwell fatigue 	9/1/15	10/1/15												
 Dwell fatigue mechanisms 	9/1/15	10/30/15												
 Areas for further study 	10/1/15	5/10/18												
 In Situ Mechanical Testing 	12/15/15	8/15/17	•		_									
 Experimental setup 	12/15/15	2/19/16												
 Equibiaxial tension-tension loading 	2/10/16	8/15/17												
 Non-equibiaxial tension-tension loading 	8/10/16	8/15/17												
 Equibiaxial dwell fatigue 	1/2/17	8/15/17												
 Non-equibiaxial dwell fatigue 	1/2/17	8/15/17												
 Dwell fatigue crystal plasticity instantiation 	5/16/17	11/15/17												
 Data Analysis 	1/1/16	5/10/18												_
 Bulk trends 	1/1/16	5/10/18												
 Grain neighborhood effects 	6/1/17	5/10/18												

Today

Acknowledgements

- Advisors and committee
 - Aaron Stebner, Adam Pilchak, Branden Kappes, John Berger, Peter Collins, Michael Kaufman
- Fellow research group members
 - Ashley Bucsek, Harshad Paranjape, Jinesh Dahal, Zach Brunson, Nathan Johnson, Bryan Marsh, Luis Ham Villa, Andrew Peterson
- Argonne National Lab Advanced Photon Source (APS) 1-ID Beam Line
 - Jonathan Almer, Peter Kenesei, Ali Mashayekhi, Jun-Sang Park
- MTS Systems Corporation
 - Steve Lemmer, Justin Vignes

Funding

 \geq

MTS

ADVANCED NONFERROUS STRUCTURAL ALLOYS

- Air Force Research Laboratory (AFRL)
- Center of Advanced Non-Ferrous Structural Alloys (CANFSA)
- National Science Foundation Civil, Mechanical and Manufacturing Innovation (NSF-CMMI) Award # 1454668

Thank You

Garrison Hommer Colorado School of Mines ghommer@mines.edu (715) 456 5754

References, Acknowledgements, and Contact

[1] Véronique Doquet, Vincent De Greef, Dwell-fatigue of a titanium alloy at room temperature under uniaxial or biaxial tension (2011)

[2] Zhen Zhang, M.A. Cuddihy, F.P.E. Dunne, On rate-dependent polycrystal deformation: the temperature sensitivity of cold dwell fatigue (2015)

[3] J.C. Williams, R.G. Baggerly, N.E. Paton, Deformation Behavior of HCP Ti-Al Alloy Single Crystals (2002)

[4]V. Doquet and V. De Greef, "Dwell-fatigue of a titanium alloy at room temperature under uniaxial or biaxial tension," Int. J. Fatigue, vol. 38, pp. 118–129, May 2012.

[5] Bernier, J. V., N. R. Barton, U. Lienert, and M. P. Miller. (2011). J of Strain Analysis for Engg Design

[6] Sharma, Hemant, Richard M. Huizenga, Aleksei Bytchkov, Jilt Sietsma, and S. Erik Offerman. (2012). Acta Mat

45

- > CANFSA
- NSF-CMMI Award # 1454668
 - Experiment and specimen design
- > AFRL
 - Material studies
- Advanced Photon Source (APS) 1-ID Beam Line
 - > In situ experiments

Garrison Hommer Colorado School of Mines ghommer@mines.edu (715) 456 5754

Penar biaxial loading using

cruciform geometry

Logical extension of uniaxial tension/compression

Custom planar biaxial load frame attributes

- Diffraction
 - Compact (~ 3 x 3 x 0.5 ft, ~500 lbs)
 - > Transportable
 - Sample center deviation < 5 μm at maximum load (25 kN per axis)
 - 320° rotation without beam obstruction (260° data with 15° diffraction cone
 - Beam Alignment
- Mechanical
 - 4 Independent hydraulic actuators
 - All ratios of tension/compression
 - 4 alignment fixtures
 - Aligned for < 30 με (0.003 %) bending under load

⁴⁸ Specimen geometry: tension, compression and diffraction capable

Experimental setup at the Advanced Photon Source, 1-ID-E beamline

⁵⁰ Specimen geometry: variable maximum gage stress

Planar biaxial can elucidate anisotropy and

asymmetry of complete yield locus

Microstructural effects on diffraction patterns.

Diffracted beam from individual polycrystal grains produces spot pattern on area detector

Bimodal grain size distribution

Powder = *small grains*

Spots = large grains Center Proprietary – Terms of CANFSA Membership Agreement Apply

Ti-7Al diffraction rings: high plastic

Highly smeared spots

Membership Agreement Apply

Ti-7Al diffraction rings: low plastic

➢ Distinct spots
 ➢ "large" grains (~100 µm)
 ➢ No smearing
 ➢ No plastic deformation

Membership Agreement Apply

Beam, specimen and grain

MINES

Far-field vs. near-field HEDM

- Far-field: grain strain and orientation
- Near-field: grain morphology

Model shows soft grain strain

- > Z. Zheng et al., International Journal of Plasticity (2016)
- Soft grains show residual compressive stresses
- > Hard grains show residual tensile stresses

Origins of anisotropy and asymmetry

- Texture
- Grain shape
- Low symmetry crystal lattices
- Several deformation mechanisms
 - Slip, twinning, phase transformation
 - Asymmetry and anisotropy
 - Path dependence

IOWA STATE

Mg and Ti alloys: hexagonal close packed (HCP)

а

С

at/~hadlev/ss1/problems/kittel1_3/hcp.gi

NiTi alloys: some with monoclinic phase

prietary – Terms of CANFSA

ership Agreement Apply

http://upload.wikimedia.org/wikipedia/ commons/thumb/6/67/Monoclinic_cell .svg/438px-Monoclinic_cell.svg.png

HEDM constraints, requirements and limitations

- Load frame
 - Rotation/translation stage weight limit: 600 lbs.
 - Maximize angular range of 2D data sets: 360°
 - Align specimen center with rotation axis
 - Maintain same grains in beam
 - Maintain sample-to-detector distance
- Specimen
 - Maximum penetration depth: 2 4 mm
 - No diffracted beam interference
- Material
 - Minimum grain size: ~25 μm
 - Maximum grains in beam: 1000's
 - Grain size uniformity
 - Not heavily deformed

⁶³ Specimen geometry: diffraction capabilities

- \succ Measurable diffraction angle (2 θ) function of
 - ➢ Beam width (w)
 - Material penetration capability (t)

Experimental setup at the

Hydraulic lines

⁶⁵ Neighborhood dependencies of hard orientations with minimum SCA

- Selected grains with low basal nRSS and SCA
 Low SCA indicates not receiving load
 Hard grains in hard neighborhoods
- 1:1 Mises stress increases with increasing neighborhood
- 1:4 trend weak, no distinctly hard grains

⁶⁶ Neighborhood dependencies of hard grains with maximum Mises stress

- Selected grains with highest Mises stress
 Indicates receiving load
 - Hard grains in soft neighborhoods
- 1:1 Mises stress decreases with increasing neighborhood
 Softer neighborhoods shed more load

Probe atomic scale with particle beam

Load frame finraction fapabilities

- 322° total rotation without load frame interference with incident beam
- Minimum 15° diffraction cone for 3D reconstruction techniques
 - 50 70 keV X-ray source
- 262° of sample rotation

IOWA STATE 2

