Project 17: Characterization of Microstructure Evolution in Nickel-Titanium-Hafnium Intermetallics

 Student: Sean Mills (Mines) Advisor(s): Aaron Stebner (Mines) 	Project Duration PhD: August 2015 to August 2019
 <u>Problem:</u> Ni-Ti alloys experience high residual stress due to rapid quenching processes. The result is cracking and machining distortion. Not quenching leads to low hardness. <u>Objective:</u> Elucidate the effect of Hf ternary alloying on metallurgy and bearing element performances. <u>Benefit:</u> Hf-alloying could lead to reduction in residual stress by eliminating the need for rapid cooling while retaining high strength and hardness levels of quenched binary Ni-Ti. 	 <u>Recent Progress</u> Rolling contact fatigue (RCF) tests on Ni₅₄Ti₄₅Hf₁ and Ni₅₄Ti₄₃Hf₃ alloy specimens TEM characterization of microstructure evolution in 56at.% Ni alloys Continued Time/Temperature/Transformation (TTT) research

Metrics			
Description	% Complete	Status	
1. Residual stress and hardness testing on Ni ₅₅ Ti ₄₅ & Ni ₅₄ Ti ₄₅ Hf ₁ (NASA)	80%	•	
2. Literature review	80%	•	
3. Rolling contact fatigue characterization of Ni ₅₄ Ti ₄₅ Hf ₁ alloy	70%	•	
4. Time/Temperature/Transformation of $Ni_{54}Ti_{45}Hf_1$ alloy	30%	•	
5. Alloy optimization – vary nickel and hafnium contents by 1-8 at%	20%	•	

3

Center Proprietary – Terms of CANFSA Membership Agreement Apply