Project 14: Measurement and Modeling of Anisotropy in Ti-6AI-4V Forgings Dashboard

 Student: Connor Campbell (Mines) Advisor(s): T. Lowe (Mines), K. Clarke (Mines) 	Project Duration PhD: January 2015 to December 2019
Problem: Preferred crystal orientation (texture) in forgings of Ti-6AI-4V limits the inspectability and predictability of mechanical properties in forgings. <u>Objectives:</u> Assessing capability of current models to predict localized texture, extending them to address limitations, and applying the code to a complex forging <u>Benefit:</u> Validated microstructural models to predict texture that can be integrated into an industrially- relevant software package (DEFORM [®])	 <u>Recent Progress</u> Literature review emphasizing microstructural evolution during Ti-6AI-4V processing Identified limitations of current transformation texture model Identified microstructural (variant selection) models to assess impact on texture prediction

Metrics			
Description	% Complete	Status	
1. Survey of current knowledge	75%	•	
2. Baseline deformation texture simulation (upset of cylindrical sample)	85%	•	
3. Assessment of transformation texture limitations	30%	•	
4. Extension of current models to more accurately predict texture	0%	•	
5. Application of extended models to industrial forging	0%	•	

Center Proprietary – Terms of CANFSA Membership Agreement Apply