Center for Advanced Non-Ferrous Structural Alloys

An Industry/University Cooperative Research Center

Project 14: Measurement and Modeling of Anisotropy in Ti-6AI-4V Forgings

Spring 2018 Semi-Annual Meeting Colorado School of Mines, Golden, CO April 11-12, 2018

Student: Connor Campbell (Mines) Faculty: Terry Lowe (Mines), Kester Clarke (Mines) Industrial Mentors: Tony Yao (Weber Metals), Adam Pilchak (AFRL)

Project 14: Measurement and Modeling of Anisotropy in Ti-6AI-4V Forgings Dashboard

 Student: Connor Campbell (Mines) Advisor(s): T. Lowe (Mines), K. Clarke (Mines) 	Project Duration PhD: January 2015 to December 2019
Problem: Preferred crystal orientation (texture) in forgings of Ti-6AI-4V limits the inspectability and predictability of mechanical properties in forgings. <u>Objectives:</u> Assessing capability of current models to predict localized texture, extending them to address limitations, and applying the code to a complex forging <u>Benefit:</u> Validated microstructural models to predict texture that can be integrated into an industrially- relevant software package (DEFORM [®])	 <u>Recent Progress</u> Literature review emphasizing microstructural evolution during Ti-6AI-4V processing Identified limitations of current transformation texture model Identified microstructural (variant selection) models to assess impact on texture prediction

Metrics								
Description	% Complete	Status						
1. Survey of current knowledge	75%	•						
2. Baseline deformation texture simulation (upset of cylindrical sample)	85%	•						
3. Assessment of transformation texture limitations	30%	•						
4. Extension of current models to more accurately predict texture	0%	•						
5. Application of extended models to industrial forging	0%	•						

Presentation Outline

- Background information and industrial relevance
- Previous work
 - Baseline deformation-induced crystallographic texture
- Recent progress
 - Identified limitations of transformation texture model
- Future plans
 - Focus on variant selection (VS)

Industrial Relevance

- Ti-6Al-4V is the most common titanium alloy
- Properties are dependent on processing
 - Largely determined by anisotropic α phase
 - Orientation, distribution, and morphology
- Localized texture can occur during processing
 - Microtextured regions (MTRs), or macrozones
 - Detrimental to first- and second-tier properties
 - Impede ultrasonic inspection

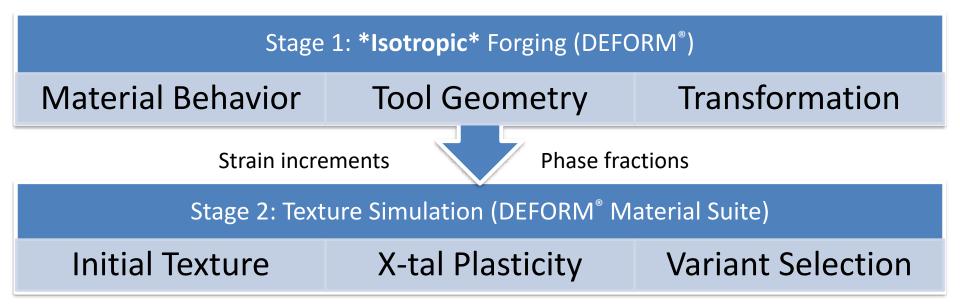
ADVANCED NONFERROUS STRUCTURAL ALLOYS

Industrial Relevance cont'd

- Uncertainty can cause costly false negatives
- If MTRs could be predicted
 - Fewer parts could be scrapped
 - Local material properties could be predicted
 - Process paths could be optimized
- Current models need further development
 - Industrial goal: "Predictable and controllable locationspecific properties and microstructure"

Project Goal

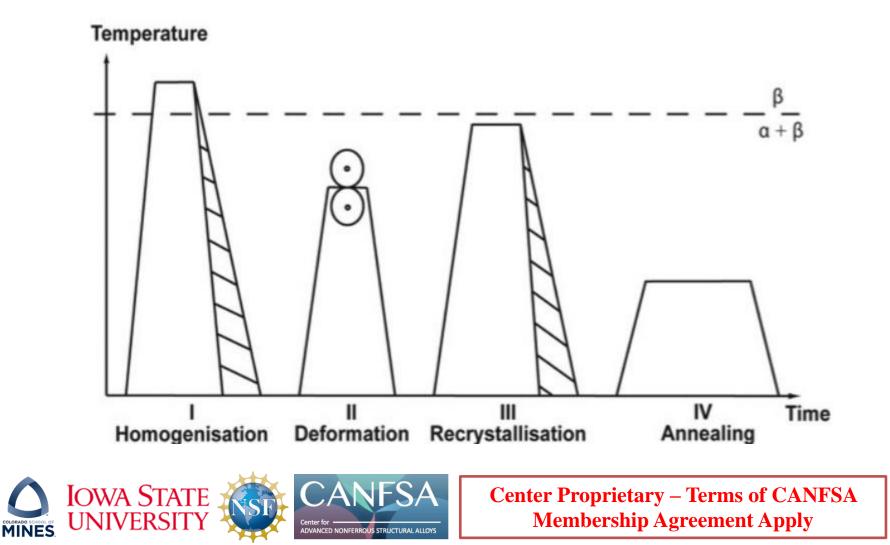
- Understand which microstructural processes dominate texture evolution in Ti-6Al-4V
- Provide a method to predict texture resulting from thermomechanical processing of Ti-6Al-4V
 - DEFORM[®] software used to predict deformation
 - Emphasis on phase transformation, variant selection
 - Assess existing models from literature



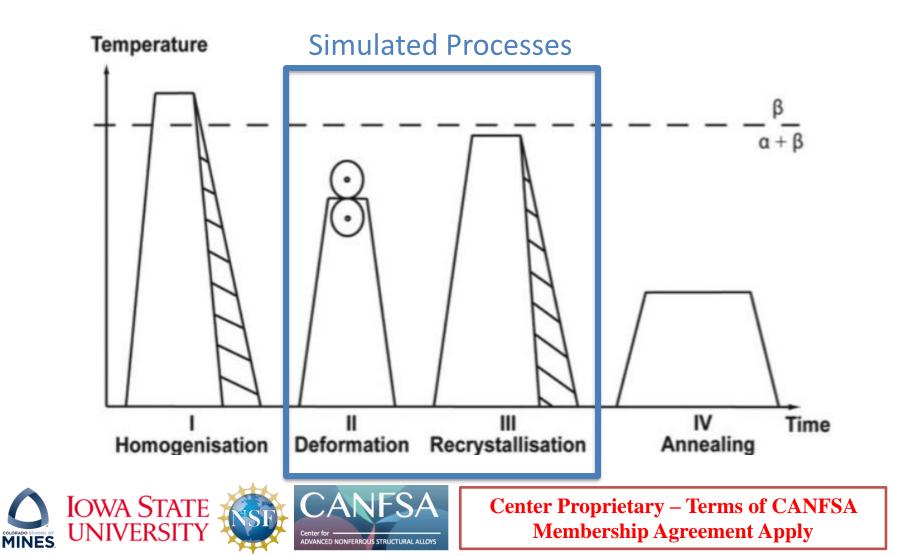
Methodology

- 1) Assess capability of current DEFORM[®] models
 - Accomplished via a simple, baseline simulation
 - Where are the limitations?
- 2) Extend models to address current deficiencies
 - Phase transformation and variant selection
- 3) Apply improved models to an industrial forging
 - Determine what improvements were made
 - Assess new limitations

Previous work: Simulation Construction



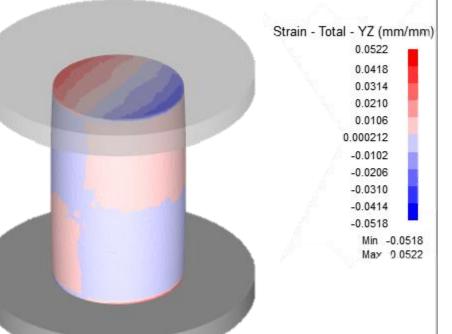
Schematic TMP of Ti-6AI-4V


Lutjering, G., and J. C. Williams. *Titanium*. Springer, 2003.

9

Schematic TMP of Ti-6AI-4V

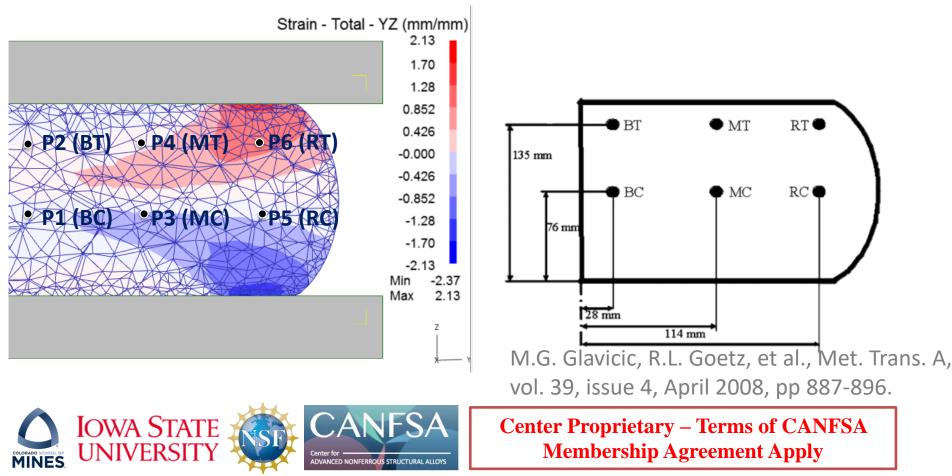
Lutjering, G., and J. C. Williams. Titanium. Springer, 2003.



Stage 1: Simulation of Previous Forging

• Replicating experiment from literature

ADVANCED NONFERROUS STRUCTURAL ALLOYS

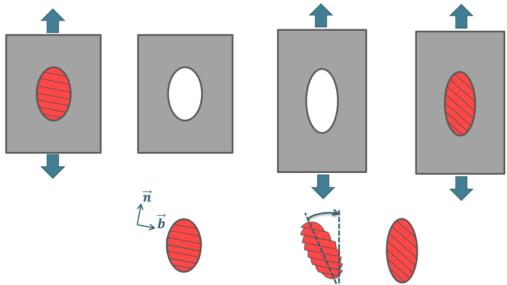

- Simple cylindrical specimen was compressed to 30% height
- 50°C subtransus
- Quasi-isothermal
- After deformation:
 - Water quenched
 - Held 30°C subtransus for 1hr
 - Quenched again

Calculation of Strain Increments

• Strain increments, phase fractions fed into postprocessor to predict crystallographic rotations

Phase Transformation Model as Implemented in DEFORM®

- Outputs are only phase <u>fractions</u>
 - Used for strain partitioning (Viscoplastic Self-Consistent)
 - No grain size or morphology predictions
 - Further work needed to incorporate heterogeneity
- Phase fractions initiated using ß-approach curve
 - Only primary α grows according to MEDC model
 - Secondary α thickening **can be** predicted (SALT)
 - Grain-boundary α growth can be predicted
 - Detrimental to properties and therefore usually avoided

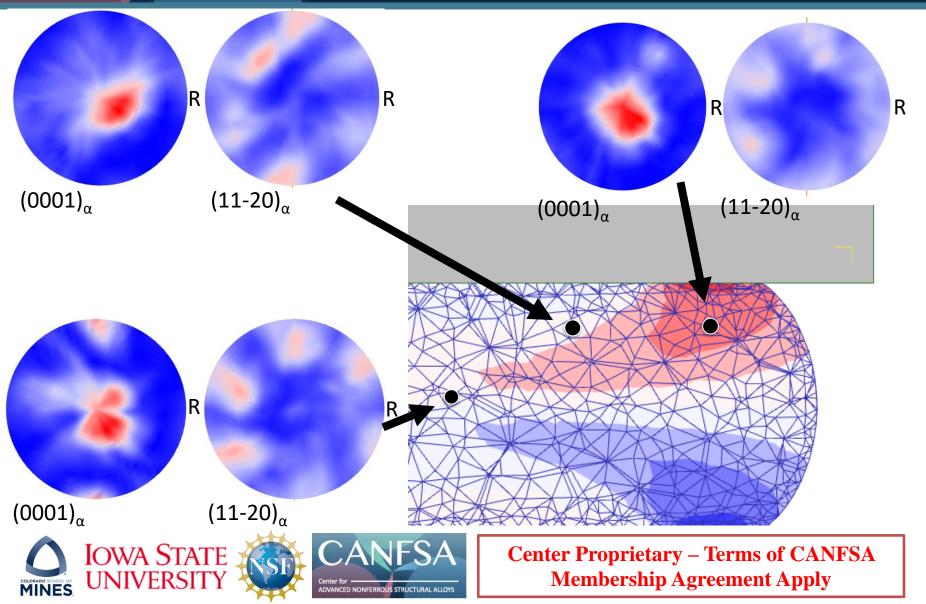


Stage 2: Material Suite Texture Prediction

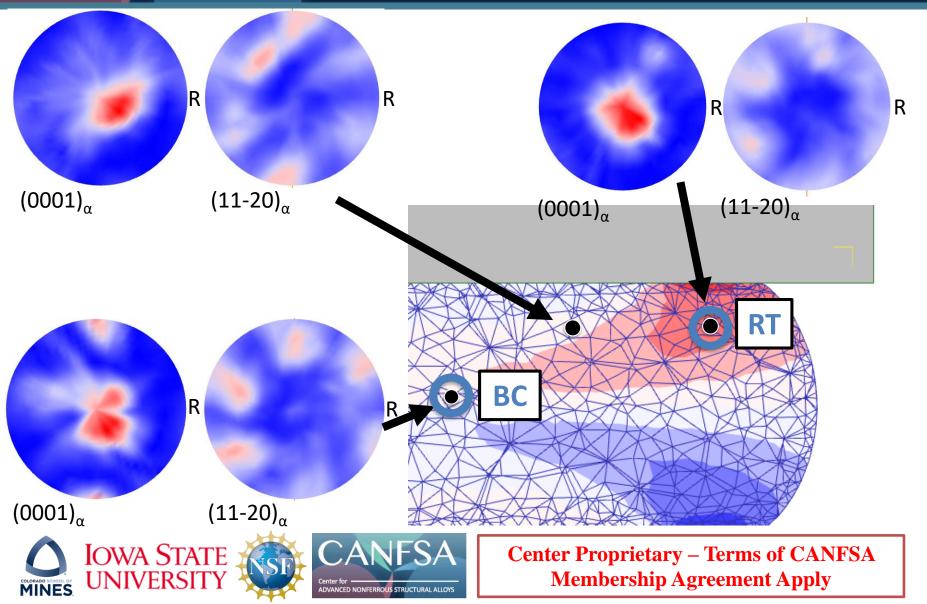
- Pole figures taken from six points specified by Glavicic et al.
- Figures taken along axis of compression (sample Z-axis)
- Viscoplastic self-consistent (VPSC) scheme used to partition strain b/t phases

R. A. Lebensohn and C. N. Tomé, Acta Metallurgica et Materialia 41, 2611 (1993).

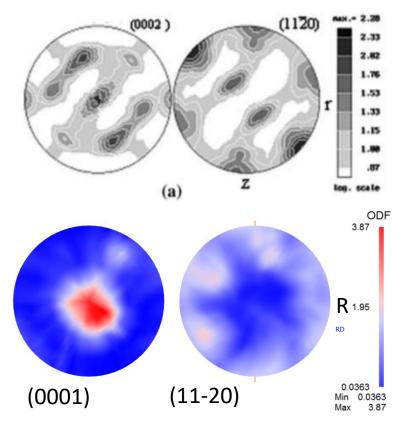
IOWA STATE


Texture Simulation Key Assumptions

- Initial texture was completely random
- Random variant selection
 - Though no evolution during heat treatment
- ß strength/hardening = 1/3 that of α
- Penalty imposed to pyramidal slip in α
- Basal CRSS = Prismatic CRSS



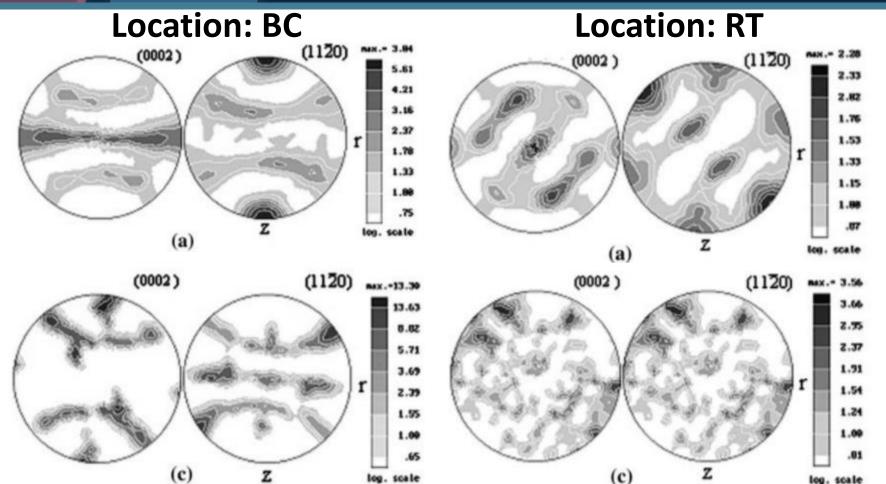
DEFORM[®] Predicts Spatial Variations of Texture


16

DEFORM[®] Predicts Spatial Variations of Texture

17

¹⁸ Current Predictions Differ from Measured Results


M.G. Glavicic, R.L. Goetz, et al., Met. Trans. A, vol. 39, issue 4, April 2008, pp <u>887-896</u>.

- Little, if any similarities to measured results
- Current models:
 - Don't crash
 - Predict spatial variations
 - Are works in progress
- Where to go from here?

Variant Selection Affects Texture Prediction

IOWA STATE UNIVERSITY

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Measured

Simulated

COLORADO SCHOOL OF

Current Progress: Focusing on VS

• What is variant selection?

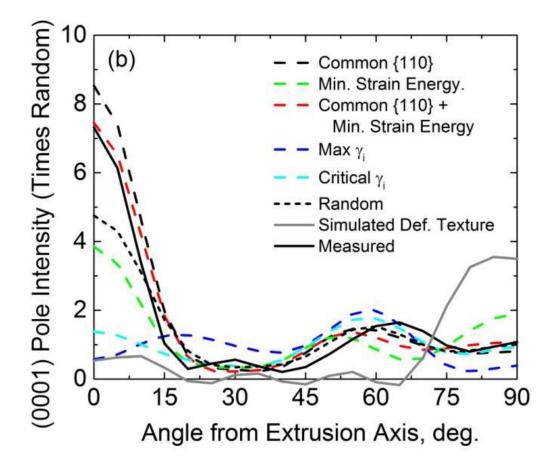
 $\begin{array}{l} \{110\}_{\mathrm{fs}} // (0001)_{\alpha} \\ \langle 111\rangle_{\mathrm{fs}} // \left[2\overline{11}0\right]_{\alpha} \end{array} \end{array}$

- $\beta \rightarrow \alpha$ following a Burgers orientation relationship (BOR)
- 12 possible variants of α from ß decomposition
- If all variants equally likely \rightarrow weak transformation texture
- However, this is usually not what is observed!
- Many different theories as to how variants are selected!

Reported VS Mechanisms and Variables

- Random
 - # variants per ß grain
- Common {110}_ß plane

- Codes for these models have been provided by Adam Pilchak (Thanks, Adam!)
- ß phase misorientation distribution, # neighboring grains
- Slip on {110} _ß
 - ß texture, slip system strengths
- Minimize local elastic strain energy density (E_{int})
 - Local σ_{ii} from FEM, transformation strain ϵ_{ii}^{*}
- Combination of Common {110}
 B + min(E{int})



Previous Work: Extrusion VS @ 899°C

ADVANCED NONFERROUS STRUCTURAL ALLOYS

- Common {110} + min(E_{int}) are best for this case
- There is a *vast* unexplored space of process parameters!

Ma, Pilchak, Allison, unpublished, 2013

Leveraging Past Experiments

- There is a significant body of work on Ti-64 processing
 - Samples available at AFRL (as-rolled/extruded/forged)
- DEFORM[®] has **some** capability
 - More predictive models + validation necessary
- Most work conducted on as-deformed samples
 - Less work on solution HT in α/β field

Characterizing samples and predicting transformation texture with available VS schemes will provide insight into where each of these schemes dominates texture evolution

Plans for Next Reporting Period

- Continue literature search, DEFORM model development
 - Investigate S.L. Semiatin's work to find experiments of interest
- Compile VS schemes into one single file
 - Currently, 5 separate codes \rightarrow challenging to test
- Investigate influence of α_p orientation on VS
 - Can use ultrafine grained Ti as a "baseline"
 - UFG has random α_p distribution
 - Compare to other product forms/strain paths

24

Summary

- We are evaluating and evolving texture models using DEFORM[®]
- We are focused on variant selection schemes
- We will leverage past experiments to further explore effects of VS during α/β heat treatment
- This will determine the conditions under which different VS schemes drive transformation texture
 - Developers are waiting to get hands on validated models so that forging industry can benefit!

Progress

Project 14: Anisotropy in Ti-6Al-4V

							_
					Period Highlig	an Duration 🛛 Actual Start 📕 % Complete 💹 Actual (beyond pl	n) % Complete (beyond plan)
ACTIVITY	PLAN START	PLAN DURATION	ACTUAL START	ACTUAL DURATIO N	PERCENT COMPLETE	5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Literature					75%		
Review	1	52	1	52	7370		
Construction of					100%		
Baseline Sim.	1	16	1	16	100%		
Initial Texture					100%		
Calculations	6	2	6	2	100/0		
Assessment of					100%		
Initial Results	8	2	8	3	100/0		
Texture Sim.					90%		
Parameter Test	6	4	6	8	5070		
Current VS					80%		
Assessment	10	3	12	8	00,0		
Add'l Deformation					50%		
Sims.	17	8	16	9			
Combining VS					10%		
Codes	25	2	25	2			
Assessing VS		_		_	0%		
Codes	27	3	27	3			
Extending VS	20	6	20	~	0%		
Codes Applying VS	29	6	29	6			
Codes	36	8	36	8	0%		
ID'ing Samples	30	0	30	0			
of Interest	28	3	28	3	0%		
Characterizing	20	5	20	5			
Samples	31	6	31	6	0%		
Heat Treat. Of				· ·			
Samples	37	3	37	3	0%		
Texture				-			
Measurements	40	5	40	5	0%		
Analysis of		-		-			
Results	45	10	0	3	0%		
							A CTU 2TO WURDOWS

Connor Campbell <u>concampb@mines.edu</u> (760) 449-4836

²⁸ Project 14 - Measurement and Modeling of Textural Anisotropy in Ti-6AI-4V

Graduate Student – Connor Campbell (CSM) Faculty/Advisors – T. Lowe, Z. Yu, K. Clarke (CSM) Industrial Mentor – T. Yao (Weber Metals)

Program Goal

Microstructural texture in forgings of Ti-6AI-4V can interfere with their inspection via ultrasonic techniques. Predicting texture will identify regions where texture can impair nondestructive inspection

Approach

Utilize DEFORM software to model microstructure and texture development in Ti-6AI-4V alloys during forging

Verify modeling results with experimental data

Benefits

Generate constitutive law implementing microstructural effects on mechanical properties and design optimizations Address/mitigate issues of ultrasonic inspection associated with texture in forged components

DEFORM-3D simulation of cogging

http://wildeanalysis.co.uk/fea/ software/deform/deform-3dsuite/deform-cogging

Project Duration Jan. 2015 to Dec. 2019